首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed nuclear magnetic resonance (NMR) measurements on an underdoped single-crystal Ba0.77K0.23Fe2As2 with T c?=?16.5 K. Below T N?= 46 K, an internal magnetic field splits the NMR peaks of H?∥?c and shifts those of H?∥?a to higher frequencies. The nuclear spin-lattice relaxation rate 1/T 1 measured at the central peak with H?∥?a shows a distinct decrease below T c(μ 0 H?=?12 T)?= 16 K. Our results clearly show that antiferromagnetic order and superconductivity coexist at a microscopical length scale.  相似文献   

2.
We investigate the superconducting phase in the K(x)Ba(1-x)Fe2As2 122 compounds from moderate to strong hole-doping regimes. Using the functional renormalization group, we show that, while the system develops a nodeless anisotropic s(±) order parameter in the moderately doped regime, gapping out the electron pockets at strong hole doping drives the system into a nodal (cos k(x) + cos k(y))(cos k(x) - cos k(y)) d-wave superconducting state. This is in accordance with recent experimental evidence from measurements on KFe2As2 which observe a nodal order parameter in the extreme doping regime. The magnetic instability is strongly suppressed.  相似文献   

3.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.  相似文献   

4.
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.  相似文献   

5.
The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment μ=3.9μ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large μ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.  相似文献   

6.
The evolution of (75)As NMR parameters with composition and temperature was probed in the Ba(Fe(1-x)Ru(x))(2)As(2) system where Fe is replaced by isovalent Ru. While the Ru end member was found to be a conventional Fermi liquid, the composition (x = 0.5) corresponding to the highest T(c) (20 K) in this system shows an upturn in the (75)As [Formula: see text] below about 80 K, evidencing the presence of antiferromagnetic (AFM) fluctuations. These results are similar to those obtained in another system with isovalent substitution, BaFe(2)(As(1-x)P(x))(2) (Nakai et al 2010 Phys. Rev. Lett. 105 107003) and point to a possible role of AFM fluctuations in driving superconductivity.  相似文献   

7.
Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ? Ω(b)(0).  相似文献   

8.
Ba(1-x)K(x)Fe(2)As(2) superconducting samples (x = 0, 0.2, 0.4, 0.5) were synthesized by the solid-state reaction method. In this contribution the doping effect of potassium on the lattice dynamics in this newly discovered Ba(1-x)K(x)Fe(2)As(2) superconductor has been investigated by extended X-ray absorption fine-structure spectroscopy. The analysis shows that with potassium doping an increased disorder in the iron layers is mainly related to the softening of the Fe-Fe bond. Information about the electronic structure of these materials has also been obtained by looking at the X-ray absorption near-edge structure spectra that point out the presence of holes in the Fe-3d/As-4p hybridized orbital of the BaFe(2)As(2)-based system.  相似文献   

9.
The ternary iron arsenide BaFe2As2 becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium. We have discovered bulk superconductivity at T{c}=38 K in (Ba1-xKx)Fe2As2 with x approximately 0.4. The parent compound BaFe2As2 crystallizes in the tetragonal ThCr2Si2-type structure, which consists of (FeAs);{delta-} iron arsenide layers separated by Ba2+ ions. BaFe2As2 is a poor metal and exhibits a spin density wave anomaly at 140 K. By substituting Ba2+ for K+ ions we have introduced holes in the (FeAs);{-} layers, which suppress the anomaly and induce superconductivity. The T{c} of 38 K in (Ba0.6K0.4)Fe2As2 is the highest in hole doped iron arsenide superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free compounds with the ThCr2Si2-type structure.  相似文献   

10.
We measure the penetration depth λab(T) in Ba(Fe(1-x)Co(x))(2)As(2) using local techniques that do not average over the sample. The superfluid density ρs(T) ≡ 1/λab(T)2 has three main features. First, ρs (T = 0) falls sharply on the underdoped side of the dome. Second, λab(T) is flat at low T at optimal doping, indicating fully gapped superconductivity, but varies more strongly in underdoped and overdoped samples, consistent with either a power law or a small second gap. Third, ρs (T) varies steeply near Tc for optimal and underdoping. These observations are consistent with an interplay between magnetic and superconducting phases.  相似文献   

11.
Scanning tunneling spectroscopic studies of Ba(Fe(1-x)Co(x))(2)As(2) (x=0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition T(c). The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave vectors (±π, 0) and (0, ±π) are consistent with sign-changing s-wave superconductivity. The excess zero-bias conductance and the large gap-to-T(c) ratios suggest dominant unitary impurity scattering.  相似文献   

12.
Zero-field muon-spin-rotation (μSR) measurements on (Y1? x Pr x )Ba2Cu3O7 [x=1.0, 0.8, 0.6, and 0.54] show evidence for antiferromagnetic ordering of the Cu moments within the Cu?O planes, with Néel temperatures 285, 220, 35. 30 and 20 K, respectively. Forx=1.0 the local muon magnetic field is ≈16 mT, but decreases to ≈12 mT at 17K, due to additional magnetic ordering. The zero-field data, in conjunction with transport data, allow construction of a complete phase diagram for this system. Transverse-field (1 kOe) μSR data forx=0.2 (T c =75 K) show that the muon depolarization is determined primarily by the Cu nuclear moments forT>T c , and by the vortex state forT c . Fitting the superconducting-state data to a BCS model yields an extrapolated zero-temperature magnetic penetration depth of 2170 Å.  相似文献   

13.
We characterize the spontaneous magnetic field, and determine the associated temperature T(g), in the superconducting state of (Ca(x)La(1-x)) (Ba(1.75-x)La(0.25+x)) Cu(3)O(y) using zero and longitudinal field muon spin resonance measurements for various values of x and y. Our major findings are (i) T(g) and T(c) are controlled by the same energy scale, (ii) the phase separation between hole poor and hole rich regions is a microscopic one, and (iii) spontaneous magnetic fields appear gradually with no moment size evolution.  相似文献   

14.
Terahertz and infrared spectra of the conductivity, σ(ν), and dielectric constant, ?(ν), of a Ba(Fe0.9Co0.1)2As2 film (T c = 20 K) have been analyzed together with previous specific-heat and angular resolved photoelectron spectroscopy data. It has been shown that the spectra σ(ν) and ?(ν) of Ba(Fe0.9Co0.1)2As2 in the superconducting phase at T = 5 K, as well as the magnetic field penetration depth, can be described well using the standard Bardeen-Cooper-Schrieffer (BCS) model with an additive contribution of electron and hole bands. It has been found that the measured temperature dependence of the magnetic field penetration depth in a wide temperature range 5 K < T < T c can be described only with the introduction of interband pairing interaction. The coupling constant of electron and hole bands, λ1, 2 = 0.1, as well as the temperature dependences of superconducting gaps in the electron and hole subsystems, has been determined using the model of two-band superconductivity developed earlier for MgB2.  相似文献   

15.
57Fe Mössbauer measurements are reported for the series K x Ba1?x Fe2S3, x ≤ 0.3, at temperatures between 4.2 K ≤ T ≤ 294 K. A decrease of the Debye temperature from 435 to 405 K with x, indicates a weakening of the stiffness of the Fe sublattice. The ordering temperatures, taken from the appearance of magnetic hyperfine splitting in the spectra, are approximately 40 K lower for x ≥ 0.1. The values of the centre shift and the small temperature dependence of the quadrupole splitting strongly supports that similar to the border compound BaFe2S3 also the K containing samples should be characterised as mixed valence compounds.  相似文献   

16.
We report Eu-local-spin magnetism and Ni-doping-induced superconductivity(SC)in a 112-type ferroarsenide system Eu(Fe_(1-x)Ni_x)As_2.The non-doped EuFeAs_2exhibits two primary magnetic transitions at ~100 and ~40 K,probably associated with a spin-density-wave(SDW)transition and an antiferromagnetic ordering in the Fe and Eu sublattices,respectively.Two additional successive transitions possibly related to Eu-spin modulations appear at 15.5 and 6.5 K.For the Ni-doped sample with x=0.04,the SDW transition disappears,and SC emerges at T_c=17.5 K.The Eu-spin ordering remains at around 40 K,followed by the possible reentrant magnetic modulations with enhanced spin canting.Consequently,SC coexists with a weak spontaneous magnetization below 6.2 K in Eu(Fe_(0.96)Ni_(0.04))As_2,which provides a complementary playground for the study of the interplay between SC and magnetism.  相似文献   

17.
In a recent contribution to this journal, it was shown that the transition temperatures of optimal high-T(C) compounds obey the algebraic relation T(C0) = k(-1)(B)/?ζ, where ? is related to the mean spacing between interacting charges in the layers, ζ is the distance between interacting electronic layers, β is a universal constant and k(B) is Boltzmann's constant. The equation was derived assuming pairing based on interlayer Coulomb interactions between physically separated charges. This theory was initially validated for 31 compounds from five different high-T(C) families (within an accuracy of ±1.37 K). Herein we report the addition of Fe(1+x)Se(1-y) and Fe(1+x)Se(1-y)Te(y) (both optimized under pressure) and A(z)Fe(2-x)Se(2) (for A = K, Rb or Cs) to the growing list of Coulomb-mediated superconducting compounds in which T(C0) is determined by the above equation. Doping in these materials is accomplished through the introduction of excess Fe and/or Se deficiency, or a combination of alkali metal and Fe vacancies. Consequently, a very small number of vacancies or interstitials can induce a superconducting state with a substantial transition temperature. The confirmation of the above equation for these Se-based Fe chalcogenides increases to six the number of superconducting families for which the transition temperature can be accurately predicted.  相似文献   

18.
A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.  相似文献   

19.
20.
Using the density functional full-potential linearized augmented plane wave approach, the x-ray absorption and magnetic circular dichroism (XMCD) spectra of Ga(1-x)Mn x As are calculated. Significantly, XMCD of Mn is highly sensitive to the change in environment, and thus can be utilized to characterize impurity distribution. The nature of Mn-induced spin polarization on Ga and As sites, vital for the carrier mediated magnetic ordering, is discussed in light of computational and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号