共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations are used to study mechanical energy dissipation in carbon nanotube oscillators of lengths of tens of nanometers. The principal source of friction is found to be the ends of the tubes and hence dynamical friction is virtually independent of the overlap area between tubes. As a result of this, tube commensuration does not lead to significantly increased frictional forces. The friction force is found to depend strongly and nonlinearly on the relative velocity of the tubes. It is suggested that a strong velocity dependence and strong contributions from surface edges may be quite general features of friction at the nanoscale. 相似文献
2.
Song D Wang F Dukovic G Zheng M Semke ED Brus LE Heinz TF 《Physical review letters》2008,100(22):225503
Time-resolved anti-Stokes Raman spectroscopy has been applied to probe the dynamics of optical phonons created in single-walled carbon nanotubes by femtosecond laser excitation. From measurement of the decay of the anti-Stokes Raman signal in semiconducting nanotubes of (6,5) chiral index, a room-temperature lifetime for G-mode phonons of 1.1+/-0.2 ps has been determined. This lifetime, which reflects the anharmonic coupling of the G-mode phonons to lower-frequency phonons, is important in assessing the role of nonequilibrium phonon populations in high-field transport phenomena. 相似文献
3.
The effect of uniaxial strain on the optical transition energies of single-walled carbon nanotubes with known chiral indices was measured by Rayleigh scattering spectroscopy. Existing theory accurately predicts the trends in the measured strain-induced shifts, but overestimates their magnitude. Modification of the analysis to account for internal sublattice relaxation results in quantitative agreement with experiment. 相似文献
4.
Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes
We determine optical absorption cross sections of single-wall carbon nanotubes for visible light copolarized and cross polarized with respect to the nanotube axis. The need for perfectly aligned ensembles in absorbance measurements is eliminated by using Raman scattering to measure the nematic order parameter in magnetically aligned nanotube suspensions. The absorbance data allow the first quantitative, spectral comparisons with theories of local field depolarization, and provide benchmark spectra for simple, rapid, and quantitative measurements of alignment within nanotube dispersions. 相似文献
5.
6.
We report a study of the rotational dynamics in double-walled nanotubes using molecular dynamics simulations and a simple analytical model that reproduces the observations very well. We show that the dynamic friction is linear in the angular velocity for a wide range of values. The molecular dynamics simulations show that for large enough systems the relaxation time takes a constant value depending only on the interlayer spacing and temperature. Moreover, the friction force increases linearly with contact area and the relaxation time decreases with the temperature with a power law of exponent -1.53+/-0.04. 相似文献
7.
Molecular dynamics simulations of coaxial carbon nanotubes in relative sliding motion reveal a striking enhancement of friction when phonons whose group velocity is close to the sliding velocity of the nanotubes are strongly excited. The effect is analogous to the dramatic increase in air drag experienced by aircraft flying close to the speed of sound but differs in that it can occur in multiple velocity ranges with varying magnitude, depending on the atomic level structures of the nanotubes. The phenomenon is a general one that may occur in other nanoscale mechanical systems. 相似文献
8.
Toshihiko Myojo Takako Oyabu Kenichiro Nishi Chikara Kadoya Isamu Tanaka Mariko Ono-Ogasawara Hirokazu Sakae Tadashi Shirai 《Journal of nanoparticle research》2009,11(1):91-99
Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with
their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment.
In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments.
A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2
to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse
the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using
a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples
by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT
was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT
fibers were 4–6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical
manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study. 相似文献
9.
We describe interlayer force measurements during prolonged, cyclic telescoping motion of a multiwalled carbon nanotube. The force acting between the core and the outer casing is modulated by the presence of stable defects and generally exhibits ultralow friction, below the measurement limit of 1.4 x 10(-15) N/atom and total dissipation per cycle lower than 0.4 meV/atom. Defects intentionally introduced in the form of dangling bonds lead to temporary mechanical dissipation, but the innate ability of nanotubes to self heal rapidly optimizes the atomic structure and restores smooth motion. 相似文献
10.
Carbon nanotubes are the focus of intense research interest because of their unique properties and applications potential. We present a study based on quantum electrodynamics concerning the optical force between a pair of nanotubes under laser irradiance. To identify separate effects associated with the pair orientation and laser beam geometry, two different systems are analyzed. For each, an analytical expression for the laser-induced optical force is determined, and the corresponding magnitude is estimated. 相似文献
11.
We present direct experimental observation of exciton-phonon bound states in the photoluminescence excitation spectra of isolated single-walled carbon nanotubes (SWNT) in aqueous suspension. The photoluminescence excitation spectra from several distinct SWNTs show the presence of at least one sideband related to the tangential modes, lying 0.2 eV above the main absorption or emission peak. Both the energy position and line shapes of the sidebands are in excellent agreement with recent calculations [Phys. Rev. Lett. 94, 027402 (2005)] that predict the existence of exciton-phonon bound states, a sizable spectral weight transfer to these exciton-phonon complexes, and that the amount of this transfer depends on the specific nanotube structure and diameter. 相似文献
12.
We have studied magneto-photoluminescence (PL) spectra of a single carbon nanotube at low temperatures. A single PL peak arising from optically allowed (bright) exciton state was observed under the zero-magnetic field, and an additional PL peak from optically forbidden (dark) exciton state was enhanced with increasing the magnetic field. Excitons populate in the lower dark state at low temperatures, and the optically forbidden transition is observed due to the Aharonov-Bohm effect. 相似文献
13.
We have performed electroabsorption spectroscopy on micelle-wrapped single-wall carbon nanotubes. In semiconducting nanotubes, many oscillating structures composed of the increase and decrease of absorption are observed in the spectra in the region of the first and second absorption bands, E11 and E22. The spectral shape is reproduced mainly by the second-derivative curve of the absorption spectrum, which indicates the presence of nearly degenerate bright and dark excitonic states. 相似文献
14.
K. V. Gogolinskii Z. Ya. Kosakovskaya A. S. Useinov I. A. Chaban 《Acoustical Physics》2004,50(6):664-669
A technique is developed for measuring the modulus of elasticity of a material with a Nanoscan scanning force microscope on the basis of measuring the dependence of probe vibration frequency on the penetration depth of the needle into the specimen. This technique makes it possible to study materials with elastic moduli from 50 to 1000 GPa. The Young moduli of dense films of carbon nanotubes oriented at angles of 45° and 90° to the quartz substrate are measured. From their ratio, the Young modulus in the direction perpendicular to the tubes and the anisotropy of the elastic moduli are determined. A comparison of these values with the corresponding values obtained for a nanotube film deposited on a silicon substrate is carried out. On the basis of this comparison, a conclusion is made concerning the interaction between single-layer nanotubes and between nanotubes in a mixture of single-layer and multilayer ones. 相似文献
15.
An atomic force microscope is used to study the effect of humidity on the interaction between carbon nanotubes anchored to atomic force microscopy tips and various samples. Commercial silicon tips were also used for comparison. Adhesion force and dissipative energy were measured between these tips and highly oriented pyrolytic graphite (HOPG) and PMMA in contact mode. The data provides a detailed understanding of carbon nanotube interactions as a function of humidity. 相似文献
16.
Carbon nanotubes (CNTs) are semimetallic while boron nitride nanotubes (BNNTs) are wide band gap insulators. Despite the discrepancy in their electrical properties, a comparison between the mechanical and thermal properties of CNTs and BNNTs has a significant research value for their potential applications. In this work, molecular dynamics simulations are performed to systematically investigate the mechanical and thermal properties of CNTs and BNNTs. The calculated Young’s modulus is about 1.1 TPa for CNTs and 0.72 TPa for BNNTs under axial compressions. The critical bucking strain and maximum stress are inversely proportional to both diameter and length-diameter ratio and CNTs are identified axially stiffer than BNNTs. Thermal conductivities of (10, 0) CNTs and (10, 0) BNNTs follow similar trends with respect to length and temperature and are lower than that of their two-dimensional counterparts, graphene nanoribbons (GNRs) and BN nanoribbons (BNNRs), respectively. As the temperature falls below 200 K (130 K) the thermal conductivity of BNNTs (BNNRs) is larger than that of CNTs (GNRs), while at higher temperature it is lower than the latter. In addition, thermal conductivities of a (10, 0) CNT and a (10, 0) BNNT are further studied and analyzed under various axial compressive strains. Low-frequency phonons which mainly come from flexure modes are believed to make dominant contribution to the thermal conductivity of CNTs and BNNTs. 相似文献
17.
18.
Single-walled carbon nanotubes (SWNTs) are luminescent. Up to now, two preparation methods, both of which isolate individual SWNTs, have enabled the detection of nanotube bandgap photoluminescence (PL): encapsulation of individual SWNTs into surfactant micelles and direct growth of individual SWNTs suspended in air between pillars. This paper compares the PL obtained from suspended SWNTs to published PL data obtained from encapsulated SWNTs. We find that emission peaks are blueshifted by 28 meV on average for the suspended nanotubes as compared to the encapsulated nanotubes. Similarly, the resonant absorption peaks at the second set of van Hove singularities are blueshifted on average by 16 meV. Both shifts depend weakly on the particular chirality and diameter of the SWNT. PACS 78.67.Ch; 78.55.-m 相似文献
19.
Received: 9 November 1998 / Accepted: 25 November 1998 相似文献
20.
Low-energy, dark excitonic states have recently been predicted to lie below the first bright (E11) exciton in semiconducting single-walled carbon nanotubes [Phys. Rev. Lett. 93, 157402 (2004)10.1103/PhysRevLett.93.157402]. Decay into such deep excitonic states is implicated as a mechanism which reduces photoluminescence quantum yields. In this study we report the first direct observation of deep excitons in SWNTs. Photoluminescence (PL) microscopy of suspended semiconducting single-walled carbon nanotubes (SWNTs) reveals weak emission satellites redshifted by approximately 38-45 and approximately 100-130 meV relative to the main E11 PL emission peaks. Similar satellites, redshifted by 95-145 meV depending on nanotube species, were also found in PL measurements of ensembles of SWNTs in water-surfactant dispersions. The relative intensities of these deep exciton emission features depend on the nanotube surroundings. 相似文献