首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a mechanism of superconductivity in which the order of the ground state does not arise from the usual Landau mechanism of spontaneous symmetry breaking but is rather of topological origin. The low-energy effective theory is formulated in terms of emerging gauge fields rather than a local order parameter and the ground state is degenerate on topologically non-trivial manifolds. The simplest example of this mechanism of superconductivity is concretely realized as global superconductivity in Josephson junction arrays.  相似文献   

2.
3.
4.
Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.  相似文献   

5.
We demonstrate the existence of nonlocal topological (string) order in half-integer-spin antiferromagnetic Heisenberg chains on macroscopic scale on the basis of analytical scaling analysis and density matrix renormalization group calculations. Strong numerical evidence leads to a conjecture that chains with S = (2m-1)/2 and m (m = integers) belong to the same topological class defined by the topological angle theta/pi = 1/m that plays a role similar to the fictitious gauge field in the fractional quantum Hall effect.  相似文献   

6.
Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow velocity inside the porous medium, fluid dispersion and flow tracing of fluid.  相似文献   

7.
We propose a topological order parameter for interacting topological insulators, expressed in terms of the full Green's functions of the interacting system. We show that it is exactly quantized for a time-reversal invariant topological insulator, and it can be experimentally measured through the topological magneto-electric effect. This topological order parameter can be applied to both interacting and disordered systems, and used for determining their phase diagrams.  相似文献   

8.
We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (GLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU(N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev’s Toric code model and Wen’s plaquette model are equivalent and reduce, by a duality mapping, to an Ising chain, demonstrating that despite the spectral gap in these systems the toric operator expectation values may vanish once thermal fluctuations are present. This illustrates the fact that the quantum states themselves in a particular (operator language) representation encode TQO and that the duality mappings, being non-local in the original representation, disentangle the order. We present a general algorithm for the construction of long-range string and brane orders in general systems with entangled ground states; this algorithm relies on general ground states selection rules and becomes of the broadest applicability in gapped systems in arbitrary dimensions. We exactly recast some known non-local string correlators in terms of local correlation functions. We discuss relations to problems in graph theory.  相似文献   

9.
New numerical results concerned with formation of orientational order and topological defects in non-ideal systems of particles, interacted via screened Coulomb potential, are presented. Calculations have been performed in a wide range of parameters, corresponding to the experimental conditions in the laboratory dusty plasmas. Relations between a number of topological defects and shape of a bond-angular correlation function are obtained for the first time.  相似文献   

10.
11.
The precise theoretical characterization of a fractionalized phase in spatial dimensions higher than one is through the concept of "topological order." We describe a physical effect that is a robust and a direct consequence of this hidden order that should enable a precise experimental characterization of fractionalized phases. In particular, we propose specific "smoking-gun" experiments to unambiguously settle the issue of electron fractionalization in the underdoped cuprates.  相似文献   

12.
A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, di, F(lmn)(ijk), delta(ijk). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the "topological entropy" which directly measures the total quantum dimension D= Sum(id2i).  相似文献   

13.
We argue, based on general principles, that topological order is essential to realize fractionalization in gapped insulating phases in dimensions d > or = 2. In d = 2 with genus g, we derive the existence of the minimum topological degeneracy q(g) if the charge is fractionalized in units of 1/q, irrespective of microscopic model or effective theory. Furthermore, if the quasiparticle is either boson or fermion, it must be at least q(2g).  相似文献   

14.
The formation dynamics of topological defects and the orientational order in nonideal systems of particles interacting with a screened Coulomb potential is numerically simulated. Calculations are performed in a broad range of parameters corresponding to experimental conditions in a laboratory dusty plasma. A relation is obtained between the number of defects, the shape of the orientational correlation function, and the coupling parameter of the system. New approximations are proposed for the orientational correlation function in the liquid and hexatic phases of structures analyzed.  相似文献   

15.
It is proven that magnetizable quasicrystals undergoing large deformations admit elastic ground states characterized by a net of linear topological defects for the magnetic spin field.  相似文献   

16.
Time-of-flight (TOF) measurements are valuable in the estimation of distances, displacements and velocities of moving objects, phase differences of wave pulses, temperature of the atmosphere, and so on. The effects of sound source on time-of-flight measurements have been investigated in this paper. The sound sources considered are: electric horn, impact noise source, aerodynamic noise from a free jet, and the Hartmann whistle. The focus of the present study is to highlight the advantage of using Hartmann whistle for TOF measurements as this device is simple and attractive, without any moving parts. Time-of-flight of sound waves is calculated by cross-correlating the signals received by two microphones. Further, the effect of signal filtering on TOF measurements is demonstrated. The results indicate that the sound source has considerable effect on TOF measurements, and the accuracy can be significantly enhanced by appropriate signal conditioning. Hartmann whistle proves to be a good candidate as an acoustic source for TOF measurement.  相似文献   

17.
Topological order in two-dimensional systems is studied by combining the braid group formalism with a gauge invariance analysis. We show that flux insertions (or large gauge transformations) pertinent to the toroidal topology induce automorphisms of the braid group, giving rise to a unified algebraic structure that characterizes the ground-state subspace and fractionally charged, anyonic quasiparticles. Minimal ground-state degeneracy is derived without assuming any relation between quasiparticle charge and statistics. We also point out that noncommutativity between large gauge transformations is essential for the topological order in the fractional quantum Hall effect.  相似文献   

18.
We study a continuous quantum phase transition that breaks a Z2 symmetry. We show that the transition is described by a new critical point which does not belong to the Ising universality class, despite the presence of well-defined symmetry-breaking order parameter. The new critical point arises since the transition not only breaks the Z2 symmetry, it also changes the topological or quantum order in the two phases across the transition. We show that the new critical point can be identified in experiments by measuring critical exponents. So measuring critical exponents and identifying new critical points is a way to detect new topological phases and a way to measure topological or quantum orders in those phases.  相似文献   

19.
Gaussian linking of a semiclassical path of a charged particle with a magnetic flux tube is responsible for the Aharonov-Bohm effect, where one observes interference proportional to the magnitude of the enclosed flux. We construct quantum mechanical wave functions where semiclassical paths can have second order linking to two magnetic flux tubes, and show there is interference proportional to the product of the two fluxes.  相似文献   

20.
We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topological Order with a global spin–flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trivial braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariant under the flavour symmetry and the well-known spin flip symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号