首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Advection and dispersion in time and space   总被引:2,自引:0,他引:2  
B. Baeumer  D.A. Benson  M.M. Meerschaert   《Physica A》2005,350(2-4):245-262
Previous work showed how moving particles that rest along their trajectory lead to time-nonlocal advection–dispersion equations. If the waiting times have infinite mean, the model equation contains a fractional time derivative of order between 0 and 1. In this article, we develop a new advection–dispersion equation with an additional fractional time derivative of order between 1 and 2. Solutions to the equation are obtained by subordination. The form of the time derivative is related to the probability distribution of particle waiting times and the subordinator is given as the first passage time density of the waiting time process which is computed explicitly.  相似文献   

2.
Electron scavenging in amorphous solids is analyzed by using diffusion controlled reaction model. In terms of stochastic process theory, the process is an age-dependent branching process which is described by linear death process of generalized master equation.The variation of number of trapped electron with time, N(t), is calculated with Ngai's fractional exponential waiting time density for the time between hops. Quantitative comparison with Miller's pulse radiolysis experiments on frozen 6M NaOH is made and the agreement is fairly well. The rigour and simplicity in mathematics of the generalized master equation method developed here are in sharp contrast to the master equation method in which quantitative calculation can hardly be done.  相似文献   

3.
Many studies performed in recent years indicate a rich stochastic dynamics of transitions between a multitude of conformational substates in native proteins. A slow character of this dynamics is the reason why the steady-state kinetics of biochemical processes involving protein enzymes cannot be described in terms of conventional chemical kinetics, i.e., reaction rate constants. A more sophisticated language of mean first-passage times has to be used. A technique of summing up the stochastic dynamics diagrams is developed, enabling a calculation of the steady-state fluxes for systems of enzymatic reactions controlled and gated by the arbitrary type stochastic dynamics of the enzymatic complex. For a single enzymatic reaction, it is shown that the phenomenological steady-state kinetics of Michaelis–Menten type remains essentially unaltered but the interpretation of its parameters needs substantial change. A possibility of dynamical rather then structural inhibition of enzymatic activity is supposed. Two coupled enzymatic cycles are studied in the context of the biologically important process of free energy transduction. The theoretical tools introduced are applied to elucidate the mechanism of mechanochemical coupling in actomyosin molecular motor. Relations were found between basic parameters of the flux-force dependences: the force stalling the motor, the degree of coupling between the ATPase and the mechanical cycles as well as the asymptotic turnover number, and the mean first-passage times in a random movement between the particular conformational substates of the myosin head. These times are to be determined within a definite model of conformational transition dynamics. The theory proposed, not contradicting the presently available experimental data, is capable to explain the recently demonstrated multiple stepping produced by a single myosin head during just one ATPase cycle.  相似文献   

4.
A master equation, for the time evolution of the quasi-probability density function of spin orientations in the phase space representation of the polar and azimuthal angles is derived for a uniaxial spin system subject to a magnetic field parallel to the axis of symmetry. This equation is obtained from the reduced density matrix evolution equation (assuming that the spin-bath coupling is weak and that the correlation time of the bath is so short that the stochastic process resulting from it is Markovian) by expressing it in terms of the inverse Wigner-Stratonovich transformation and evaluating the various commutators via the properties of polarization operators and spherical harmonics. The properties of this phase space master equation, resembling the Fokker-Planck equation, are investigated, leading to a finite series (in terms of the spherical harmonics) for its stationary solution, which is the equilibrium quasi-probability density function of spin “orientations” corresponding to the canonical density matrix and which may be expressed in closed form for a given spin number. Moreover, in the large spin limit, the master equation transforms to the classical Fokker-Planck equation describing the magnetization dynamics of a uniaxial paramagnet.  相似文献   

5.
We derive a fractional Fokker-Planck equation for subdiffusion in a general space- and time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.  相似文献   

6.
Moving particles that rest along their trajectory lead to time-fractional diffusion equations for the scaling limit distributions. For power law waiting times with infinite mean, the equation contains a fractional time derivative of order between 0 and 1. For finite mean waiting times, the most revealing approach is to employ two time scales, one for the mean and another for deviations from the mean. For finite mean power law waiting times, the resulting equation contains a first derivative as well as a derivative of order between 1 and 2. Finite variance waiting times lead to a second-order partial differential equation in time. In this article we investigate the various solutions with regard to moment growth and scaling properties, and show that even infinite mean waiting times do not necessarily induce subdiffusion, but can lead to super-diffusion if the jump distribution has non-zero mean.  相似文献   

7.
Ming Yi  Quan Liu 《Physica A》2010,389(18):3791-3803
The investigation of enzymatic reaction under stochastic effect and spatial effect is an interesting problem. By virtue of Monte Carlo simulation, the stochastic dynamic of enzyme and the related Michaelis-Menten mechanism with stochastic internal noise and spatial diffusion are explored in this article. (i) For the single-enzyme system, two cases, including the fast phosphorylation case [X. S. Xie, et al., J. Phys. Chem. B 109 (2005) 19068] and slow phosphorylation case [X. S. Xie, et al., Nat. Chem. Biol. 2 (2006) 87] are considered. It is found the micro enzymatic velocity rate shows a rough hyperbolic dependence on the substrate concentration, hence obeys the Michaelis-Menten law qualitatively. In addition, our result reveals that diffusion rate can adjust the Michaelis-Menten curve; especially, it is shown that increasing diffusion rate enhances the micro enzyme rate. (ii) For the multi-enzyme system, a typical example, i.e., MAPK signaling pathway is used. We apply the Michaelis-Menten mechanism to the MAPK cascade and give a simple comparison for the signaling ability between the Michaelis-Menten mechanism and the single collision mechanism [J. W. Locasale et al., PLOS Comput. Biol. 4 (2008) e1000099].  相似文献   

8.
We observe the phenomenon of stochastic resonant signaling in signal amplification enzyme cascades, where certain optimal reaction rates minimize the average threshold-crossing time. We develop a new analytical technique to obtain the mean first passage time, based on a novel decomposition of the master equation. Our analytical results are in good agreement with the exact numerical simulations. We demonstrate that resonant behavior may be a ubiquitous phenomenon in stochastic threshold crossing in cell signaling. The physical principles behind this phenomenon are elucidated.  相似文献   

9.
In many physical, social, and economic phenomena, we observe changes in a studied quantity only in discrete, irregularly distributed points in time. The stochastic process usually applied to describe this kind of variable is the continuous-time random walk (CTRW). Despite the popularity of these types of stochastic processes and strong empirical motivation, models with a long-term memory within the sequence of time intervals between observations are rare in the physics literature. Here, we fill this gap by introducing a new family of CTRWs. The memory is introduced to the model by assuming that many consecutive time intervals can be the same. Surprisingly, in this process we can observe a slowly decaying nonlinear autocorrelation function without a fat-tailed distribution of time intervals. Our model, applied to high-frequency stock market data, can successfully describe the slope of decay of the nonlinear autocorrelation function of stock market returns. We achieve this result without imposing any dependence between consecutive price changes. This proves the crucial role of inter-event times in the volatility clustering phenomenon observed in all stock markets.  相似文献   

10.
Einstein's explanation of Brownian motion provided one of the cornerstones which underlie the modern approaches to stochastic processes. His approach is based on a random walk picture and is valid for Markovian processes lacking long-term memory. The coarse-grained behavior of such processes is described by the diffusion equation. However, many natural processes do not possess the Markovian property and exhibit anomalous diffusion. We consider here the case of subdiffusive processes, which correspond to continuous-time random walks in which the waiting time for a step is given by a probability distribution with a diverging mean value. Such a process can be considered as a process subordinated to normal diffusion under operational time which depends on this pathological waiting-time distribution. We derive two different but equivalent forms of kinetic equations, which reduce to known fractional diffusion or Fokker-Planck equations for waiting-time distributions following a power law. For waiting time distributions which are not pure power laws one or the other form of the kinetic equation is advantageous, depending on whether the process slows down or accelerates in the course of time.  相似文献   

11.
The transition probability for a carrier hopping between randomly placed sites is determined for a system in thermodynamic equilibrium. The effect of the first waiting time is included and the result is shown to be consistent with the theory of statistical thermodynamics. Furthermore, a comparison is made with the master equation approach, which is shown to be exact when the waiting times are exponentially distributed. The application to ac conductivity is discussed.  相似文献   

12.
We study the fluctuation dynamics of localized denaturation bubbles in heteropolymer DNA with a master equation and complementary stochastic simulation based on novel DNA stability data. A significant dependence of opening probability and waiting time between bubble events on the local DNA sequence is revealed and quantified for a biological sequence of the T7 bacteriophage. Quantitative agreement with data from fluorescence correlation spectroscopy is demonstrated.  相似文献   

13.
14.
15.
We prove that for an arbitrary time-homogeneous stochastic process, Kramers's flux-over-population rate is identical to the inverse of the associated mean first-passage time. In this way the mean first-passage time problem can be treated without making use of the adjoint equation in conjunction with cumbersome boundary conditions.  相似文献   

16.
Cells in multicellular organisms adhere to the extracellular matrix through two-dimensional clusters spanning a size range from very few to thousands of adhesion bonds. For many common receptor-ligand systems, the ligands are tethered to a surface via polymeric spacers with finite binding range, thus adhesion cluster stability crucially depends on receptor-ligand distance. We introduce a one-step master equation which incorporates the effect of cooperative binding through a finite number of polymeric ligand tethers. We also derive Fokker-Planck and mean field equations as continuum limits of the master equation. Polymers are modeled either as harmonic springs or as worm-like chains. In both cases, we find bistability between bound and unbound states for intermediate values of receptor-ligand distance and calculate the corresponding switching times. For small cluster sizes, stochastic effects destabilize the clusters at large separation, as shown by a detailed analysis of the stochastic potential resulting from the Fokker-Planck equation.  相似文献   

17.
Forces in the actin cytoskeleton are generated by small groups of nonprocessive myosin II motors for which stochastic effects are highly relevant. Using a cross-bridge model with the assumptions of fast power-stroke kinetics and equal load sharing between equivalent states, we derive a one-step master equation for the activity of a finite-sized ensemble of mechanically coupled myosin II motors. For constant external load, this approach yields analytical results for duty ratio and force-velocity relation as a function of ensemble size. We find that stochastic effects cannot be neglected for ensemble sizes below 15. The one-step master equation can be used also for efficient computer simulations with linear elastic external load and reveals the sequence of buildup of force and ensemble rupture that is characteristic for reconstituted actomyosin contractility.  相似文献   

18.
The continuous-time random walk of Montroll and Weiss has been modified by Scher and Lax to include a coupled spatial-temporal memory. We treat novel cases for the random walk and the corresponding generalized master equation when combinations of both spatial, and temporal moments of the memory are infinite. The asymptotic properties of the probability distribution for being at any lattice site as a function of time and its variance are calculated. The resulting behavior includes localized, diffusive, wavelike, and Levy's stable laws for the appropriate scaled variable. We show that an infinite mean waiting time can lead to long time diffusive behavior, while a finite mean waiting time is not sufficient to ensure the same.  相似文献   

19.
The complete solution of the master equation for a system of interacting particles of finite density is presented. By using a new form of the Bethe ansatz, the totally asymmetric exclusion process on a ring is solved for arbitrary initial conditions and time intervals.  相似文献   

20.
V B Priezzhev 《Pramana》2005,64(6):915-925
A solution of the master equation for a system of interacting particles for finite time and particle density is presented. By using a new form of the Bethe ansatz, the totally asymmetric exclusion process on a ring is solved for arbitrary initial conditions and time intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号