首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the creation and time evolution of two-dimensional Skyrmion excitations in an antiferromagnetic spinor Bose-Einstein condensate. Using a spin rotation method, the Skyrmion spin textures were imprinted on a sodium condensate in a polar phase, where the two-dimensional Skyrmion is topologically protected. The Skyrmion was observed to be stable on a short time scale of a few tens of ms but to dynamically deform its shape and eventually decay to a uniform spin texture. The deformed spin textures reveal that the decay dynamics involves breaking the polar phase inside the condensate without having topological charge density flow through the boundary of the finite-sized sample. We discuss the possible formation of half-quantum vortices in the deformation process.  相似文献   

2.
We show that even in three dimensions an antiferromagnetic spin-1 Bose-Einstein condensate, which can, for instance, be created with (23)Na atoms in an optical trap, has not only singular linelike vortex excitations, but also allows for singular pointlike topological excitations, i.e., monopoles similar to the 't Hooft-Polyakov monopoles. We discuss the static and dynamic properties of these monopoles.  相似文献   

3.
We discuss the quantum phases and their diffusion in a spinor-1 atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the exact ground state distribution of the phase fluctuations corresponding to the total atom number (N), the magnetization (M), and the alignment (or hypercharge) (Y) of the system. The mean-field ground state is shown to be stable against these fluctuations, which dynamically recover the two continuous symmetries associated with the conservation of N and M as in current experiments.  相似文献   

4.
We show that knots of spin textures can be created in the polar phase of a spin-1 Bose-Einstein condensate, and discuss experimental schemes for their generation and probe, together with their lifetime.  相似文献   

5.
Abstract

A three-component nonlinear Schrodinger-type model which describes spinor Bose-Einstein condensate ( BEC) is considered. This model is integrable by the inverse scattering method and using Zakharov-Shabat dressing method we obtain three types of soliton solutions. The multi-component nonlinear Schrödinger type models related to symmetric spaces C.I ? Sp(4)/U(2) is studied.  相似文献   

6.
刘妮 《物理学报》2013,62(1):13402-013402
Dicke模型中的量子相变在三十多年前已被预言,该模型描述的是N个二能级原子与单模腔场集体耦合的系统.在标准Dicke模型的基础上加入原子光的非线性相互作用和含时外场驱动,使用含时幺正变换和Holstein-Primafoff变换方法从理论上推导出基态能量表达式.并且给出了丰富的相图,而且这些性质最近已有文献从实验上验证.本文主要呈现了非线性相互作用和外场驱动对量子相变的影响.  相似文献   

7.
We demonstrate a precise magnetic microscope based on direct imaging of the Larmor precession of a 87Rb spinor Bose-Einstein condensate. This magnetometer attains a field sensitivity of 8.3 pT/Hz1/2 over a measurement area of 120 microm2, an improvement over the low-frequency field sensitivity of modern SQUID magnetometers. The achieved phase sensitivity is close to the atom shot-noise limit, estimated as 0.15 pT/Hz1/2 for a unity duty cycle measurement, suggesting the possibilities of spatially resolved spin-squeezed magnetometry. This magnetometer marks a significant application of degenerate atomic gases to metrology.  相似文献   

8.
Coreless vortices were phase imprinted in a spinor Bose-Einstein condensate. The three-component order parameter of F=1 sodium condensates held in a Ioffe-Pritchard magnetic trap was manipulated by adiabatically reducing the magnetic bias field along the trap axis to zero. This distributed the condensate population across its three spin states and created a spin texture. Each spin state acquired a different phase winding which caused the spin components to separate radially.  相似文献   

9.
10.
We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the "light-cone" correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al.  相似文献   

11.
谢元栋 《物理学报》2012,61(21):57-63
研究了一维光格中旋量玻色-爱因斯坦凝聚体的高阶非线性作用下的孤子激发,得出了用椭圆积分表示的明孤子解和特定参数条件下的暗孤子解析解,并求得了能量表达式.  相似文献   

12.
庞曼曼  郝亚江 《中国物理 B》2016,25(4):40501-040501
We investigate the internal dynamics of the spinor Bose–Einstein condensates subject to dissipation by solving the Lindblad master equation. It is shown that for the condensates without dissipation its dynamics always evolve along a specific orbital in the phase space of(n_0, θ) and display three kinds of dynamical properties including Josephson-like oscillation, self-trapping-like oscillation, and ‘running phase'. In contrast, the condensates subject to dissipation will not evolve along the specific dynamical orbital. If component-1 and component-(-1) dissipate at different rates, the magnetization m will not conserve and the system transits between different dynamical regions. The dynamical properties can be exhibited in the phase space of(n_0, θ, m).  相似文献   

13.
We study the quantum dynamics of an impurity-doped Bose–Einstein condensate (BEC) system. We show how to generate the macroscopic quantum superposition states (MQSSs) of the BEC by the use of projective measurements on impurity atoms. It is found that the nonclassicality of MQSSs can be manipulated by changing the number of the impurities and their interaction with the BEC. It is shown that the BEC matter-wave field exhibits a collapse and revival phenomenon which reveals the quantum nature of the BEC matter-wave field. We investigate the micro-macro entanglement between the impurities and the BEC, and find enhancement of the micro-macro entanglement induced by the initial quantum coherence of the impurity atoms.  相似文献   

14.
We propose a simple scheme to realize the persistent spin-nematic squeezing in a spinor Bose–Einstein condensate by rapidly turning-off the external magnetic field at a time that maximal spin-nematic squeezing occurs. We observe that the optimal spin-nematic squeezing can be maintained in a nearly fixed direction. For a proper initial magnetic field, the optimal squeezing can be obviously enhanced. We further construct a spin-mixing interferometer, where the quantum correlation of the squeezed state (generated by our scheme) is fully utilized in the phase measurement, and show the phase sensitivity of the interferometer has a significant enhancement.  相似文献   

15.
We discuss dynamics of a slow quantum phase transition in a spin-1 Bose-Einstein condensate. We analytically determine the scaling properties of the system magnetization and verify them with numerical simulations in a one dimensional model.  相似文献   

16.
We show that the quantum Loschmidt echo can be employed to characterize the dynamical phase transition, from a tunnelling phase to a self-trapping phase, of a Bose-Einstein condensate in a double-well potential. The echo is found to have a relatively fast decay in the transition region, with a Gaussian decay in the self-trapping phase and a stretched exponential decay in the tunnelling phase.  相似文献   

17.
We examine the nonlinear dynamical behavior of a spinor Bose-Einstein condensate in a double-well potential. Considering a condensate with large number of atoms, such that it can be described using the mean field theory, we separate the spinor dynamics from the spatial dynamics under the single-mode approximation. We limit ourselves to certain initial conditions under which the spatial mode is frozen so that we can focus on the spinor dynamics only. Identifying collective spin variables of our system, we derive the corresponding nonlinear equations of motion for them. Employing standard stability analysis, we find and characterize fixed points of the system. For a wide range of physical parameters such as tunneling strength and non-linear interactions, as well as for various initial preparations of the system, we identify qualitatively different dynamical regimes possible in the system. In particular, complete and incomplete oscillations of spin variables between quantum wells are found. We also show that by bringing some fixed points close to each other in the phase space of the system, it is possible to induce amplitude modulation to those otherwise regular tunneling oscillations.  相似文献   

18.
贺丽  余增强 《物理学报》2017,66(22):220301-220301
各向异性超流体中的朗道临界速度并非简单地由运动方向的元激发能谱决定.在自旋-轨道耦合作用下的双分量玻色-爱因斯坦凝聚中,当系统跨过平面波相与零动量相之间的量子相变时,尽管超流声速连续变化,但垂直于自旋-轨道耦合方向的朗道临界速度会出现跳变,跳变幅度随自旋相互作用强度单调增加.根据线性响应理论,计算了凝聚体中运动杂质在不同速度下的能量耗散率,提出可以通过能量耗散观测临界速度在量子相变处的不连续性.  相似文献   

19.
We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.  相似文献   

20.
We show that a spin-1 Bose-Einstein condensate with ferromagnetic interactions spontaneously generates a topological spin texture, in which the m = +/- 1 components of the magnetic sublevels form vortices with opposite circulations. This phenomenon originates from an interplay between ferromagnetic interactions and spin conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号