首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated decoherence in Josephson-junction flux qubits. Based on the measurements of decoherence at various bias conditions, we discriminate contributions of different noise sources. We present a Gaussian decay function extracted from the echo signal as evidence of dephasing due to 1/f flux noise whose spectral density is evaluated to be about (10(-6)Phi0)2/Hz at 1 Hz. We also demonstrate that, at an optimal bias condition where the noise sources are well decoupled, the coherence observed in the echo measurement is limited mainly by energy relaxation of the qubit.  相似文献   

2.
In this paper, we present a comprehensive analysis of the coherence phenomenon of two coupled dissipative oscillators. The action of a classical driving field on one of the oscillators is also analyzed. Master equations are derived for both regimes of weakly and strongly interacting oscillators from which interesting results arise concerning the coherence properties of the joint and the reduced system states. The strong coupling regime is required to achieve a large frequency shift of the oscillator normal modes, making it possible to explore the whole profile of the spectral density of the reservoirs. We show how the decoherence process may be controlled by shifting the normal mode frequencies to regions of small spectral density of the reservoirs. Different spectral densities of the reservoirs are considered and their effects on the decoherence process are analyzed. For oscillators with different damping rates, we show that the worse-quality system is improved and vice versa, a result which could be useful for quantum state protection. State recurrence and swap dynamics are analyzed as well as their roles in delaying the decoherence process.  相似文献   

3.
We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interference, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. The quantum shot noise theory accounts for the data quantitatively and allows us to determine directly the transmissions of the two channels characterizing the nanotube. In the weak backscattering regime, the dependence of the noise on the backscattering current is found weaker than expected, pointing either to electron-electron interactions or to weak decoherence.  相似文献   

4.
We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the mode/may be an optimal candidate of qubit for quantum computation.  相似文献   

5.
We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the model may be an optimal candidate of qubit for quantum computation.  相似文献   

6.
Considering X-states the density matrixes of which look like the letter X, we propose a weak measurement-based entanglement protection protocol of two-qubit X-states under local amplitude damping channels using weak measurement and reversal operation. It is shown that, with increase of the decoherence parameter, the entanglement attenuates rapidly owing to the amplitude damping noise and even experiences entanglement sudden death (ESD). However, the entanglement under the weak measurement and reversal operation is always much stronger than the entanglement undergoing the amplitude damping decoherence. These results reflect that entanglement of two-qubit X-states from amplitude damping decoherence can be protected, and ESD can be circumvented by increasing the weak measurement strength.  相似文献   

7.
Dynamical decoupling pulse sequences have been used to extend coherence times in quantum systems ever since the discovery of the spin-echo effect. Here we introduce a method of recursively concatenated dynamical decoupling pulses, designed to overcome both decoherence and operational errors. This is important for coherent control of quantum systems such as quantum computers. For bounded-strength, non-Markovian environments, such as for the spin-bath that arises in electron- and nuclear-spin based solid-state quantum computer proposals, we show that it is strictly advantageous to use concatenated pulses, as opposed to standard periodic dynamical decoupling pulse sequences. Namely, the concatenated scheme is both fault tolerant and superpolynomially more efficient, at equal cost. We derive a condition on the pulse noise level below which concatenation is guaranteed to reduce decoherence.  相似文献   

8.
In this work, we consider decoherence of a central spin by a spin bath. In order to study the nonperturbative decoherence regimes, we develop an efficient mean-field-based method for modeling the spin-bath decoherence, based on the representation of the central spin density matrix. The method can be applied to longitudinal and transverse relaxation at different external fields. In particular, by modeling large-size quantum systems (up to 16 000 bath spins), we make controlled predictions for the slow long-time decoherence of the central spin.  相似文献   

9.
Decoherence suppression from disturbance of the environment is an essential task in quantum information processing. We investigate decoherence suppression of a qubit system interacting with a heat bath with phase decoherence by employing the weak measurement (WM) and quantum measurement reversal (QMR) operation. We show explicitly that the qubit decoherence can be efficiently completely suppressed by means of the combination WM and QMR, which is independent of the form of the spectral density of the reservoir and the form of initial input state.  相似文献   

10.
We have derived an explicit nonperturbative expression for decoherence of quantum oscillations in a qubit by Gaussian low-frequency noise. Decoherence strength is controlled by the noise spectral density at zero frequency, while the noise correlation time τ determines the time t of crossover from the \({1 \mathord{\left/ {\vphantom {1 {\sqrt t }}} \right. \kern-\nulldelimiterspace} {\sqrt t }}\) to the exponential suppression of coherence. We also performed Monte Carlo simulations of qubit dynamics with noise which agree with the analytical results.  相似文献   

11.
Decoherence of quantum objects in noisy environments is important in quantum sciences and technologies. It is generally believed that different processes coupled to the same noise source have similar decoherence behaviors and stronger noises cause faster decoherence. Here we show that in a quantum bath, the case can be the opposite. We predict that the multitransition of a nitrogen-vacancy center spin-1 in diamond can have longer coherence time than the single transitions, even though the former suffers twice stronger noises from the nuclear spin bath than the latter. This anomalous decoherence effect is due to manipulation of the bath evolution via flips of the center spin.  相似文献   

12.
In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states. Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of phase damping. Qualitatively this behavior is also reflected in alternative entanglement measures, but the quantitative agreement between different measures depends on the chosen noise model. The phase decoherence for this model results in monotonic increase in the total entropy while the atomic sub-entropy keeps its periodic behaviour without any effect.  相似文献   

13.
L. Stodolsky 《Physics Reports》1999,320(1-6):51-58
We discuss fluctuations in the measurement process and how these fluctuations are related to the dissipational parameter characterizing quantum damping or decoherence. On the example of the measuring current of the variable-barrier or QPC problem we discuss the extra noise or fluctuation connected with the different possible outcomes of a measurement. This noise has an enhanced short time component which could be interpreted as due to “telegraph noise” or “wavefunction collapses”. Furthermore, the parameter giving the strength of this component is related to the parameter giving the rate of damping or decoherence.  相似文献   

14.
We describe a new approach to spin squeezing based on a double-pass Faraday interaction between an optical probe and an optically dense atomic sample. A quantum eraser is used to remove residual spin-probe entanglement, thereby realizing a single-axis twisting unitary map on the collective spin. This interaction can be phase matched, resulting in exponential enhancement of squeezing as a function of optical density for times short compared to the decoherence time. In practice the scaling and peak squeezing depends on decoherence, technical loss, and noise. Including these imperfections, our model indicates that ~10 dB of squeezing should be achievable with laboratory parameters.  相似文献   

15.
16.
By using a six-qubit cluster state as the quantum channel, we investigat the joint remote state preparation of an arbitrary equatorial two-qubit state. We analytically obtain the fidelities of the joint remote state preparation process in noisy environments, such as the amplitude-damping noise and phase-damping noise. In our scheme, the two different noise including amplitude-damping noise and the phase-damping noise only affect the travel qubits of the quantum channel, and then we show that the fidelities in these two noisy cases only depend on the decoherence noisy rate.  相似文献   

17.
Utilizing a general joint remote state preparation (JRSP) model, we investigate the JRSP of an arbitrary two-qubit quantum state in noisy environments. Two important decoherence noise models, the amplitude-damping noise and the phase-damping noise, have been considered in our paper. Our investigation of the noisy environment mainly focuses on the process of distributing the channel state. We use fidelity to describe how close the output state with the prepared state are, and how much information has been lost in the transmission. Interestingly, studies show that, if the initial state is successfully prepared, the fidelities in these two cases will only depend on the amplitude parameter of the initial state and the decoherence noisy rate, but have nothing to do with the phase information. Finally, we make some discussions for these two cases to show that in which noisy environment more information will be lost.  相似文献   

18.
We study decoherence in the quantum walk on the xy-plane.We generalize the method of decoherent coin quantum walk,introduced by [T.A.Brun,et al.,Phys.Rev.A 67(2003) 032304],which could be applicable to all sorts of decoherence in two-dimensional quantum walks,irrespective of the unitary transformation governing the walk.As an application we study decoherence in the presence of broken line noise in which the quantum walk is governed by the two-dimensional Hadamard operator.  相似文献   

19.
We theoretically investigate the dynamics of a double dot charge qubit that is embedded inside a suspended semiconductor slab in terms of a perturbation treatment based on a unitary transformation. The phonon-induced decoherence is analyzed in detail after a derivation of phonon spectral density. It is shown that a charge qubit of high quality can be obtained due to the inhibition of the electron-phonon coupling in the confined structure of the slab.  相似文献   

20.
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号