首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular dichroism in the angular distribution of photoelectrons from SrTiO(3):Nb and Cu(x)Bi(2)Se(3) is investigated by 7-eV laser angle-resolved photoemission spectroscopy. In addition to the well-known node that occurs in the circular dichroism pattern when the incidence plane matches the mirror plane of the crystal, we show that another type of node occurs when the mirror plane of the crystal is vertical to the incidence plane and the electronic state is two-dimensional. The flower-shaped circular dichroism patterns in the angular distribution occurring around the Fermi level of SrTiO(3):Nb and around the Dirac point of Cu(x)Bi(2)Se(3) are explained on equal footings. We point out that the penetration depth of the topological states of Cu(x)Bi(2)Se(3) depends on momentum.  相似文献   

2.
Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should have to remain coherent at ambient temperatures. Here, we studied temperature dependence of the electronic structure and the scattering rates on the surface of a model topological insulator, Bi2Se3, by high-resolution angle-resolved photoemission spectroscopy. We found an extremely weak broadening of the topological surface state with temperature and no anomalies in the state's dispersion, indicating exceptionally weak electron-phonon coupling. Our results demonstrate that the topological surface state is protected not only from elastic scattering on impurities, but also from scattering on low-energy phonons, suggesting that topological insulators could serve as a basis for room-temperature electronic devices.  相似文献   

3.
The first angle-resolved photoemission spectroscopy results from MgB2 single crystals are reported. Along the GammaK and GammaM directions, we observed three distinct dispersive features approaching the Fermi energy. These can be assigned to the theoretically predicted sigma (B 2p(x,y)) and pi (B 2p(z)) bands. In addition, a small parabolic-like band is detected around the Gamma point, which can be attributed to a surface-derived state. The overall agreement between our results and the band calculations suggests that the electronic structure of MgB2 is of a conventional nature, thus implying that electron correlations are weak and may be of little importance to superconductivity in this system.  相似文献   

4.
By relativistic first-principles photoemission calculations for the topological insulator Bi_{2}Te_{3}, we study how the spin texture of the Dirac state manifests itself in circular dichroism. On one hand, there are significant modifications of the initial state's spin texture, which are explained by final-state effects and the symmetry of the photoemission setup. On the other hand, a highly symmetric setup allows us to draw conclusions about the detailed Dirac state's spin texture. Our study supports that circular dichroism in angular distribution successfully complements spin- and angle-resolved photoelectron spectroscopy from topological insulators.  相似文献   

5.
Yttrium can be loaded with hydrogen up to high concentrations causing dramatic structural and electronic changes of the host lattice. We report on angle-resolved photoemission experiments of the Y trihydride phase. Most importantly, we find the absence of metal d bands at the Fermi level and a set of flat, H-induced bands located at much higher binding energy than predicted, indicating an increased electron affinity at H sites.  相似文献   

6.
7.
8.
Laser-based angle-resolved photoemission spectroscopy measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 high temperature superconductor. Our superhigh resolution data, momentum-dependent measurements, and complete analysis provide important information to judge the nature of the high energy dispersion and kink. Our results rule out the possibility that the high energy dispersion from the momentum distribution curve (MDC) may represent the true bare band as believed in previous studies. We also rule out the possibility that the high energy kink represents electron coupling with some high energy modes as proposed before. Through detailed MDC and energy distribution curve analyses, we propose that the high energy MDC dispersion may not represent intrinsic band structure.  相似文献   

9.
The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A_3Bi(A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission(ARPES) measurements on the two cleaved surfaces,(001) and(100), of Na_3Bi. On the(001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k_x–k_y plane and by varying the photon energy to get access to different out-of-plane k_zs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the(100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the(100) plane. We directly observe two isolated 3D Dirac nodes on the(100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ~150 me V before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na_3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the3 D Dirac cones, on the possible formation of surface reconstruction of the(001) surface, and on the issue of basic Brillouin zone selection for the(100) surface.  相似文献   

10.
First‐principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under compression and decreases under tension, whereas the dependence of the Rashba spin splitting on the strain is the opposite. Large values of αR = 1.57 eV Å at the bottom of the conduction band (electrons) and αR = 3.34 eV Å at the top of the valence band (holes) are obtained without strain. These values can be further enhanced to αR = 1.83 eV Å and αR = 3.64 eV Å, respectively, by 2% tensile strain. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
Zhang W  Liu G  Zhao L  Liu H  Meng J  Dong X  Lu W  Wen JS  Xu ZJ  Gu GD  Sasagawa T  Wang G  Zhu Y  Zhang H  Zhou Y  Wang X  Zhao Z  Chen C  Xu Z  Zhou XJ 《Physical review letters》2008,100(10):107002
Laser-based angle-resolved photoemission measurements with superhigh resolution have been carried out on an optimally doped Bi(2)Sr(2)CaCu(2)O(8) high temperature superconductor. New high energy features at approximately 115 meV and approximately 150 meV, in addition to the prominent approximately 70 meV one, are found to develop in the nodal electron self-energy in the superconducting state. These high energy features, which cannot be attributed to electron coupling with single phonon or magnetic resonance mode, point to the existence of a new form of electron coupling in high temperature superconductors.  相似文献   

12.
We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt_2In_7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn_5.Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt_2In_7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt_2In_7. A comparison of the common features of the electronic structure of CePt_2In_7 and CeCoIn_5 indicates that CeCoIn_5 shows a much stronger band renormalization effect than CePt_2In_7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.  相似文献   

13.
We have performed an angle-resolved photoemission spectroscopy study of the new iron-based superconductor K(0.8)Fe(1.7)Se(2) (T(c)~30 K). Clear band dispersion is observed with the overall bandwidth renormalized by a factor of 2.5 compared to our local density approximation calculations, indicating relatively strong correlation effects. Only an electronlike band crosses the Fermi energy, forming a nearly circular Fermi surface (FS) at M (π, 0). The holelike band at Γ sinks ~90 meV below the Fermi energy, with an indirect band gap of 30 meV, to the bottom of the electronlike band. The observed FS topology in this superconductor favors (π, π) inter-FS scattering between the electronlike FSs at the M points, in sharp contrast to other iron-based superconductors which favor (π, 0) inter-FS scattering between holelike and electronlike FSs.  相似文献   

14.
15.
The infrared reflection and transmission spectra of Bi2Te2Se single crystals grown by the modified Bridgeman method have been studied in the spectral range of 30–10000 cm?1 at temperatures of 5–300 K. The bandgap and its temperature dependence, optical function spectra, and concentration of free charge carriers in Bi2Te2Se have been determined.  相似文献   

16.
We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi(2)Se(3) from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.  相似文献   

17.
We use angle-resolved photoemission with circularly polarized excitation to demonstrate that in the 5 x 1 superstructure-free (Pb,Bi)(2)Sr(2)CaCu(2)O(8+delta) (Pb-Bi2212) material there are no signatures of time-reversal symmetry breaking in the sense of the criteria developed earlier [Nature (London) 416, 610 (2002)]]. The dichroic signal retains reflection antisymmetry as a function of temperature and doping and in all mirror planes, precisely defined by the experimental dispersion at low energies. The obtained results demonstrate that the signatures of time-reversal symmetry violation in pristine Bi2212, as determined by angle-resolved photoemission spectroscopy, are not a universal feature of all cuprate superconductors.  相似文献   

18.
19.
20.
The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein.The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号