首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aniline was polymerized in the presence of poly(vinyl chloride) (PVC) powders in hydrochloric acid to in situ prepare poly(vinyl chloride)/polyaniline (PVC/PANI) composite particles. UV‐vis spectra and FT‐IR spectra indicate PANI in PVC/PANI composite particles possessed a higher oxidation state with decreased aniline content in reactants. Both conductivity and impact strength of the dodecylbenzenesulfonic acid (DBSA) doped PANI composites (PVC/PANI‐DBSA), which were compression molded from the in situ prepared PVC/PANI particles, increase with the pressing temperature and decrease with the increase of DBSA doped PANI (PANI‐DBSA) loading. An excellent electric conductivity of 5.06 × 10?2 S/cm and impact strength of 0.518 KJ/m2 could be achieved for the in situ synthesized and subsequently compression molded composite. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Polyurethane/polyaniline (PU/PANI) and polyurethane‐poly(methyl methacrylate)/polyaniline (PU‐PMMA/PANI) conductive core‐shell particles were synthesized by a two‐stage polymerization process. The first stage was to produce a core of PU or PU‐PMMA via miniemulsion polymerization using sodium dodecyl sulfate (SDS) as the surfactant. The second stage was to synthesize the shell of polyaniline over the surface of core particles. Hydrogen chloride (HCl) and dodecyl benzenesulfonic acid (DBSA) were used as the dopant agents. Ammonium persulfate (APS) was used as the oxidant for the polymerization of ANI. Different concentrations of HCl, DBSA, and SDS would cause different conformations of PANI chains and thus different morphologies of PANI particles. UV–visible spectra revealed that the polaron band was blue‐shifted because of the more coiled conformation of PANI chains by increasing the concentration of DBSA. Besides, with a high concentration of DBSA, both spherical‐ and rod‐shape PANI particles were observed by transmission electron microscope, and the coverage of PANI particles onto the core surfaces was improved. The key point of formation of rod‐type PANI particles was that DBSA was served with a high concentration accompanied with the existence of HCl or SDS. The better coverage of PANI particles over the core surfaces by charging higher DBSA concentrations resulted in a higher conductivity of hybrid particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3902–3911, 2007  相似文献   

3.
This article describes electrically conductive polymer blends containing polyaniline‐dodecyl benzene sulfonic acid (PANI‐DBSA) dispersed in a polystyrene (PS) matrix or in crosslinked polystyrene (XPS). Melt blending of previously mixed, coagulated, and dried aqueous dispersions of PANI‐DBSA and PS latices lead to high conductivities at extremely low PANI‐DBSA concentrations (∼0.5 wt % PANI‐DBSA). In these blends, the very small size of the PANI‐DBSA particles and the surface properties (with surfactants used) of both the PANI and polymer particles play a major role in the PANI‐DBSA particle structuring process. The PANI‐DBSA behavior is characteristic of a unique colloidal polymeric filler with an extremely high surface area and a strong interaction with the matrix, evidenced by a significantly higher glass‐transition temperature of the matrix. The effect of the shear level on the conductivity and morphology of the PS/PANI‐DBSA blends was studied by the production of capillary rheometer filaments at various shear rates. An outstanding result was found for XPS/PANI‐DBSA blends prepared by the blending of aqueous XPS and PANI‐DBSA dispersions. Some of these blends were insulating at low shear levels; however, above a certain shear level, smooth surface filaments were generated, with dramatically increased and stable conductivities. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 611–621, 2001  相似文献   

4.
Conductivity stability at thermal environment of conductive polyaniline‐complexes/polyimide (PANI‐complexes/PI) blends, which were doped by camphorsulfonic acid (CSA) and dodecylbenzenesulfonic acid (DBSA), respectively, were investigated by conductivity measurements, electron spin resonance (ESR) spectra, differential and scanning thermometer (DSC). In the conversion process of PANI/Polyamic acid (PAA) to PANI/PI, the blend endeavored some kinds of alteration such as decomplexation of moisture and solvent, dissociation of dopant, crosslinking of PANI chain, and the imidization of PAA chain. PANI‐DBSA/PI showed higher thermal stability of conductivity than PANI‐CSA/PI, and both samples showed nearly linear decay of conductivity with increasing temperature showing greatly enhancement of conductivity stability. When they were exposed at near or over glass transition temperature, the conductivity decay became faster. The conductivity stability at base environment was also higher for PANI‐DBSA/PI due to difficulty in accessing of hydroxyl ion to PANI, which were resulted from dopant. DBSA‐doped blends showed increased polaron mobility and concentration at relatively high temperature, which led to extremely higher conductivity and its stability at high temperature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A structural study of conductive composite films consisting of ethylene-co-vinylacetate (EVA) copolymer, polyaniline (PANI) and dodecylbenzenesulfonic acid (DBSA), a part of which being complexed with PANI, was performed by using differential scanning calorimetry (DSC) and presented for the first time. An additional crystalline phase is formed during the film formation by thickening EVA chain-folded lamellae with participation of‘free’ DBSA molecules at lower net PANI content (up to 5 mass%) and of both ‘free’ and complexed DBSA molecules (up to 7.5 mass%). At higher PANI content PANI-DBSA complex starts to form its own crystals and at 17.5 mass% of PANI mixed crystals of EVA with ‘free’ DBSA alkyl chains are preferably formed. It is also found that the Fox' equation correlating the glass transition temperature of a miscible blend system with its composition can be actually used in estimating the miscibility of EVA/PANI blends no matter the presence of DBSA. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

7.
Dodecylbenzenesulfonic acid (DBSA) dissolved in 2-propanol (70% solution), a surfactant and dopant, is used in the synthesis of polyaniline (PANI) colloids. The micelle-aided synthesis yields green dispersions that do not undergo macroscopic precipitation for more than a year. UV-vis studies reveal that polymerization is completed in 3 h irrespective of the feed ratio of DBSA/aniline. The polymerization yield depends on the amount of DBSA in the feed. UV-vis spectroscopy as a function of applied potential was carried out for the first time for thin layers of the dispersion. Bands corresponding to both emeraldine salt and emeraldine base were observed during cathodic potential sweeps whereas in an anodic sweep bands due to only emeraldine base were observed. Electronic absorption spectroscopy and preresonance Raman spectroscopy as a function of pH indicate emeraldine salt (metal) to emeraldine base (insulator) transformation at higher pH (pH 9-10). The high aggregation tendency of PANI particles during solvent drying yields particles with irregular shapes.  相似文献   

8.
This paper is an extension of previous work on polymerization of anilinium–DBSA (dodecylbenzenesulfonic acid) in an aqueous dispersion in the presence of mica or talc silicate particles. The presence of mica or talc particles greatly accelerates the polymerization process of anilinium‐DBSA and an encapsulated structure is formed as well. The catalytic effect of various metallic cations which exist in the chemical compositions of mica or talc on the polymerization kinetics of anilinium‐DBSA was investigated. The conductivity results along with microscopy observations prove a well formed encapsulated structure for the polyaniline/mica composites, but less for the polyaniline/talc composites. The anilinium‐DBSA complex and mica aqueous dispersions pretreated at different temperatures prior to polymerization have shown a significant effect on the polymerization rate of anilinium‐DBSA. The higher the dispersion temperature, the higher is the polymerization rate found. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
We describe the preparation of polyaniline (PANI‐EB) by aniline oxidation with KIO3 and the purification of the resulting dedoped polymer by an acetone extraction step to eliminate undesired by‐products from polyaniline, which could generate some safety concerns in the application and use of PANI. Excellent homogeneous and electrically conducting composite films can be prepared from chloroform solutions of purified PANI doped with camphorsulfonic acid in presence of cis‐1,4‐polybutadiene as the film‐forming agent. These films have been characterized by FT‐IR and UV‐VIS‐NIR spectroscopy. A method to synthesisze PANI directly doped with dodecylbenzenesulfonic acid (DBSA) is also reported. DBSA‐doped‐PANI was then used to prepare composites with polyphenylacetylene (PPA) by growing homogeneous films from chloroform solution. These films were conductive and were studied by FT‐IR and UV‐VIS‐NIR spectroscopy. In view of the application of these composites as gas sensors or in “electronic noses”, a short discussion is presented about the criteria used in the selection of the chemical nature of the host polymer where doped PANI is included to confer electrical conductivity. The interaction between the molecules to be detected and the polymeric sensing surface is discussed in terms of physisorption, chemisorption and charge‐transfer‐complex formation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
运用重氮化技术制备了水溶性磺化碳纳米管,在此基础上,以不同直径的磺化碳纳米管(1~2 nm,<8 nm,10~20 nm,30~50 nm)为载体,采用原位氧化聚合方法合成了一系列磺化碳纳米管改性聚苯胺复合材料.红外和紫外-可见光谱分析表明,聚苯胺与磺化碳纳米管之间存在π-π相互作用,并形成了电荷转移复合物;且随着碳纳...  相似文献   

11.
In the present work, the resonance Raman, UV-vis-NIR and scanning electron microscopic (SEM) data of nanorods (about approximately 300 nm in diameter) and nanofibers (about approximately 93 nm in diameter) of PANI are presented and compared. The PANI samples were synthesized in aqueous media with dodecybenzenesulfonic acid (DBSA) and beta-naphtalenesulfonic acid (beta-NSA) as dopants, respectively. The presence of bands at 578, 1400 and 1, 632 cm(-1) in the Raman spectra of PANI-NSA and PANI-DBSA shows that the formation of cross-linking structures is a general feature of the PANI chains prepared in micellar media. It is proposed that these structures are responsible for the one-dimensional PANI morphology formation. In addition, the Raman band at 609 cm(-1) of PANI fibers is correlated with the extended PANI chain conformation.  相似文献   

12.
PI/PANI复合材料的制备与表征   总被引:1,自引:0,他引:1  
以纳米聚苯胺为电磁波的吸收剂,高强度、耐高温的聚酰亚胺为基体设计与制备了高强度、耐热、质轻、薄和吸收宽的新型纳米复合吸波材料.利用微乳液法,以十二烷基苯磺酸(DBSA)为乳化剂和掺杂剂,以过硫酸铵(APS)为氧化剂合成了纳米级聚苯胺(PANI).在此基础上,以PANI的NMP溶液为均苯四甲酸二酐(PMDA)与4,4′-二氨基二苯醚(ODA)的聚合场所,室温下,原位聚合出PANI/聚酰胺酸(PAA)复合材料,再经过亚胺化制备出了PANI/PI复合材料.利用XRD表征了聚合物的结晶形态.红外光谱表征了中间体和聚合物.利用场发射扫描电镜发现PANI/PI复合材料呈现海岛结构,PANI像岛屿一样分散在PI的连续相中,两种材料复合并没有破坏各自的结晶形态.利用数字电桥和自制电极表征了不同含量复合材料的损耗性能,当聚苯胺加到3.4%以上时,复合材料的损耗因数提高了,并且随着频率的增大损耗因数直线增大.  相似文献   

13.
莫志宏  仇伟  严俊  顾子迪 《高分子学报》2008,(12):1149-1153
以(NH4)2S2O8(APS)为氧化剂,十二烷基苯磺酸(DBSA)同时为乳化剂和掺杂剂,采用乳液聚合方法制备聚苯胺膜(PANIfilm),用石英晶体微天平(QCM)实时监测聚苯胺膜的形成过程,并对其动力学过程进行研究.结果表明,聚苯胺成膜反应对APS是0.5级,对苯胺是1级,聚苯胺膜增长速率随温度的升高而增加,而聚苯胺膜的最终沉积量却减小,表观活化能Ea=41.15kJ/mol,与均相溶液聚合成膜法的结果相近;随着DBSA浓度的增加,聚苯胺膜增长速率减小,而最终的沉积量增大.  相似文献   

14.
Summary Electrically conductive composites containing high density polyethylene (HDPE) and polyaniline (PANI) - dodecylbenzenesulfonic acid (DBSA) complex were prepared in situ by bulk oxidative polymerization of aniline (ANI) in presence of DBSA. Their thermal behaviour and crystallinity parameters were studied for the first time by using differential scanning calorimetry (DSC). It was found that the presence of the conductive complex does not affect the crystalline structure of the matrix polymer neither during in situ polymerization of ANI in powdered HDPE nor upon heating of HDPE/PANI·DBSA composite up to 180°C followed by fast cooling.  相似文献   

15.
Polyaniline (PANI) latexes were synthesized by emulsion polymerization using dodecyl benzene sulfonic acid (DBSA) and sodium dodecyl sulfate (SDS) as a surfactant. Synthesized PANI–DBSA and PANI–SDS latexes were characterized by IR and UV‐visible spectroscopies, and surface morphology was analyzed by transmission electron microscopy. The PANI–DBSA were found to be nanograin shaped whereas PANI–SDS were as nanofibers. In the second stage rheological properties of waterborne PANI latexes were characterized by viscosity measurement and their dispersion stability in water. The surface morphology of the coating was examined by scanning electron microscope (SEM). The anti‐corrosion performance of uncoated carbon steel, PANI–DBSA and PANI–SDS coated carbon steel was evaluated by tafel slope analysis and immersion test studies of 0.5, 1, and 1.5% PANI/Epoxy coatings were done in 5% NaCl aqueous solution. The results indicated that the nanoPANI in epoxy coating might work as an adhesion promoter and corrosion inhibitor. The waterborne latexes, thus, were found to be highly suitable and avoid the use of organic solvents or strong acids under environmentally benign conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Small‐angle X‐ray scattering (SAXS) studies of electrically conductive blends based on polyaniline–dodecylbenzenesulfonic acid (PANI–DBSA)/styrene–butadiene–styrene (SBS) triblock copolymer were performed to investigate the influence of the blend preparation procedure on the nanoscopic structure of the blends. The blends were prepared by mechanical mixing (MM) procedure and by in situ polymerization (ISP) of aniline in the presence of SBS. The results indicate that pure PANI–DBSA presents an extended phase consisting of crystalline islands of nanometric size, with a good spatial correlation between them, embedded into an amorphous PANI phase. This feature was not observed in SBS/PANI–DBSA blends prepared by MM or ISP. In MM blends, the PANI phase is constituted by smaller domains, containing poorly spatially correlated crystalline islands, whereas in ISP blends with low or medium amount of PANI, there is no SAXS peak which could be related to a spatial correlation between PANI crystalline islands. The conductivity of the ISP blends is higher when compared to MM blends because of the higher homogeneity at nanometric scale. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3069–3077, 2007  相似文献   

17.
Inkjet printable polyaniline nanoformulations   总被引:1,自引:0,他引:1  
Aqueous polyaniline (PANI) nanodispersions doped with dodecylbenzenesulfonic acid (DBSA) were synthesized and successfully inkjet-printed using a piezoelectric desktop printer. This paper examines the optimization and characterization of the nanoparticulate formulation for optimal film electrochemistry and stability. PANI nanoparticle synthesis was optimized in terms of the ratio of monomer (aniline) to oxidant (ammonium persulphate, APS) and dopant (DBSA). Particle size, UV-vis spectroscopy, electrochemical, and conductivity analyses were performed on all materials. Optimal synthesis conditions were found to be at a molar ratio of 1.0:0.5:1.2 aniline/APS/DBSA. This resulting nanodispersion showed a uniform particle size distribution of approximately 82 nm, and UV-vis analysis indicated a high doping level. These synthetic conditions resulted in the highest conductivity, and the electrochemistry of the resulting films was well-defined and stable. Surface tension analysis and rheological studies demonstrated that the aqueous nanodispersions were suitable for inkjet printing. Successful inkjet printing of these polyaniline nanoparticulate formulations is demonstrated.  相似文献   

18.
Summary: Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10−1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils.  相似文献   

19.
Ferrofluid containing highly conductive polyaniline (PANI) was prepared, in which soluble PANI solutions dopedwith 10-camphorsulfonic acid (CSA) and dodecyl benzenesulfonic acid (DBSA) were used as the basic solution and Fe_3O_4nanoparticles (d = 10 nm) as the magnetic material. Moreover, the freestanding films of the resulting ferrofluid can beobtained by an evaporation method. The electrical and magnetic properties of the ferrofluid or its films can be adjustedthrough changing the content of PANI and Fe_3O_4. High saturated magnetization (≈ 30 emu/g) and high conductivity(≈ 250 S/cm) of the composite films can be achieved when the composite film contains 26.6 wt% of Fe_3O_4. In particular, itwas found that the composite films exhibit a super-paramagnetic behavior (Hc = 0) attributed to the size of Fe_3O_4 particles on the nanometer scale.  相似文献   

20.
利用光学显微镜和扫描电镜,对以水为介质、十二烷基苯磺酸(DBSA)为乳化剂的苯胺乳液聚合过程进行监测,发现苯胺在水体系中与DBSA反应形成DBSA-苯胺盐的棒状聚集结构,讨论了DBSA、苯胺、氧化剂的配比及浓度对聚合过程中棒状聚集结构的长度和数量及生成聚苯胺的电导率的影响,提出苯胺在DBSA/水体系中的乳液聚合反应是在胶束表面进行的,而棒状聚集结构中的DBSA-苯胺盐单体经水相扩散到乳胶粒子中,形成颗粒状的聚苯胺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号