首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The electrochemical behaviors of epinephrine (EP), dopamine (DA) and their mixture have been studied. The oxidation peaks of EP and DA at the poly(caffeic acid) modified glassy carbon electrode appeared at the same potential, but the anodic peak currents of the mixture of DA and EP were almost equal to the sum of individual anodic peak currents of EP and DA, whereas the cathodic peak current only related to the concentration of DA under appropriate condition. Base on these, the simultaneous voltammetric measurement of EP and DA at the poly(caffeic acid) film modified electrode has been developed. Ascorbic acid (AA) had no interference with the simultaneous determination of EP and DA under the same condition because the oxidative peak potential of AA was less than those of DA and EP. The modified electrode has been satisfactorily used for the simultaneous determination of EP and DA in real samples.  相似文献   

2.
Simultaneous determination of a neurotransmitter, dopamine (DA), and ascorbic acid (AA) is achieved at neutral pH on a chitosan incorporating cetyltrimethylammonium bromide (CTAB) modified glassy carbon (GC) electrode. Differential pulse voltammetry (DPV) technique was used to investigate the electrochemical response of DA and AA at a glassy carbon electrode modified with chitosan incorporating CTAB. An optimum 6.0 mmol L?1 of CTAB together with 0.5 wt% of chitosan was used to improve the resolution and the determination sensitivity. In 0.1 mol L?1 aqueous phosphate buffer solution of pH 6.8, the chitosan‐CTAB modified electrode showed a good electrocatalytic response towards DA and AA. The anodic peak potential of DA shifted positively, while that of AA shifted negatively. Thus, the difference of the anodic peaks of DA and AA reached 0.23 V, which was enough to separate the two anodic peaks very well. The presented method herein could be applied to the direct simultaneous determination of DA and AA without prior treatment. The anodic peak currents (Ipa) of DPV are proportional to DA in the concentration range of 8 μM to 1000 μM, to that of AA 10 μM to 2000 μM, with correlation coefficients of 0.9930 and 0.9945, respectively. The linear range is much wider than previously reported.  相似文献   

3.
利用循环伏安法将L-苏氨酸聚合修饰在玻碳电极表面, 制成聚L-苏氨酸修饰电极. 实验表明, 该电极对多巴胺和肾上腺素都有较好的催化氧化效果. 运用循环伏安法详细研究了修饰电极的电化学性质. 在pH 2.5的磷酸盐缓冲溶液(PBS)中, 肾上腺素的电子传递系数为0.51, 表观反应速率常数为1.33 s-1; 在pH 7.5的PBS中, 多巴胺在电极上产生一对氧化还原峰, 多巴胺在电极上的电子传递系数为0.60, 表观反应速率常数为0.92 s-1. 该修饰电极对多巴胺和肾上腺素能够进行同时测定, 还原峰电流与多巴胺和肾上腺素浓度分别在1.0×10-6-5.0×10-4 mol·L-1和3.0×10-6-1.0×10-4 mol·L-1范围内呈现良好的线性关系.  相似文献   

4.
A convenient, low cost, and sensitive electrochemical method, based on a disposable graphene nanosheets (GR) and NiO nanoparticles modified carbon screen printed electrode (NiO/GR/SPE), is described for the simultaneous determination of dopamine (DA) and uric acid (UA). The modified electrode exhibited good electrocatalytic properties toward the oxidation of DA and UA. A peak potential difference of 150 mV between DA and UA was large enough to determine DA and UA individually and simultaneously. The anodic peak currents of DA were found to be linear in the concentration range of 1.0–500.0 μM with the detection limit of 3.14×10?7 M.  相似文献   

5.
用循环伏安法制备银掺杂聚L-酪氨酸修饰玻碳电极,研究了多巴胺、肾上腺素和抗坏血酸在其电极上的电化学行为,建立了同时测定多巴胺、肾上腺素和抗坏血酸的新方法。当3种组分共存时,在磷酸盐缓冲溶液(pH6.0)中,扫描速率为140mV/s,多巴胺和肾上腺素在修饰电极上分别产生还原峰,峰电位分别为0.198和-0.205V,多巴胺和肾上腺素氧化峰重叠,峰电位为0.313V(vs.Ag/AgCl);抗坏血酸产生一个氧化峰,峰电位0.108V(vs.Ag/AgCl)。多巴胺和肾上腺素的ΔEpc=0.403V,抗坏血酸的氧化峰与多巴胺和肾上腺素的ΔEpa=0.205V,用还原峰和氧化峰可同时测定多巴胺、肾上腺素和抗坏血酸,3种组分同时测定的线性范围分别为5.0×10-6~1.0×10-4mol/L,8.0×10-6~1.0×10-4mol/L和3.0×10-5~1.0×10-3mol/L;检出限分别为5.0×10-7,8.0×10-7和5.0×10-6mol/L。本方法用于人尿液中多巴胺、肾上腺素和抗坏血酸的同时测定,结果满意。  相似文献   

6.
A novel and simple biosensor based on poly(indoleacetic acid) film-modified electrode (PIAA/CPE) was fabricated by electrochemical polymerization of indoleacetic acid on a carbon paste electrode (CPE) through cyclic voltammetry. The resulting electrode was characterized by scanning electron microscopy, and the electrochemical behaviors of dopamine (DA) and epinephrine (EP) at the electrode were studied. It was illustrated that PIAA/CPE had excellent electrochemical catalytic activities toward DA and EP. The anodic peak currents (I pa) were dramatically enhanced by about seven-fold for DA and ten times for EP at PIAA/CPE. Thus, the determinations of DA and EP were carried out using PIAA/CPE successfully. The linear responses were obtained in the range of 3.0?×?10?7~7.0?×?10?4 and 1.0?×?10?6 ~8.0?×?10?4 mol L?1 with the detection limits (3σ) of 1?×?10?7 and 4?×?10?7 mol L?1 corresponding with DA and EP, respectively. Moreover, the cathodic peaks of DA and EP were well-separated with a potential difference about 325 mV in pH 5.3 phosphate-buffered saline, so simultaneous determination of DA and EP was carried out in this paper. Additionally, the interference studies showed that the PIAA/CPE exhibited excellent selectivity in the presence of ascorbic acid (AA). With good selectivity and sensitivity, the present method has been successfully applied to the determination of DA and EP in pharmaceutical samples.  相似文献   

7.
A novel taurine modified glassy carbon electrode was prepared by electropolymerization method. The electrochemical behaviors of epinephrine (EP) and dopamine (DA) at the modified electrode were studied by cyclic voltammetry. The modified electrode exhibited enhanced sensitivity and excellent electrochemical discrimination to DA and EP. The cathodic peaks of the two species were well-separated with a potential difference of about 390 mV, so the poly(taurine) modified electrode was used for simultaneous voltammetric measurement of EP and DA by differential pulse voltammetry. Under the optimum conditions, the cathodic peak currents were linear to concentrations of EP and DA in the range of 2.0 × 10−6 to 6.0 × 10−4 mol L−1 and 1.0 × 10−6 to 8.0 × 10−4 mol L−1, respectively. The detection limits for EP and DA were 3.0 × 10−7 and 1.0 × 10−7 mol L−1, respectively. Because the oxidation of ascorbic acid (AA) is an irreversible reaction at modified electrode, the interference of AA for determining EP and DA was eliminated. The modified electrode has been satisfactorily used for the simultaneous determination of EP and DA in pharmaceutical injections.  相似文献   

8.
A glassy carbon electrode (GCE) modified with docosyltrimethylammonium chloride (DCTMACl) is used for simultaneous determination of dopamine (DA) and ascorbic acid (AA) using differential pulse voltammetry (DPV) technique in 0.10 mol·L?1 phosphate buffer solution of pH 5.0. The cationic surfactant DCTMACl modified film has a positive charge. DA exists as the positively charged species, whereas AA is the negatively charged one in the solution. Thus, at DCTMACl film-modified GCE, the oxidation peak potential of AA shifts toward less negative potential and the peak current of AA increases a little, while the oxidation peak potential of DA shifts toward more positive potential and peak current decreases greatly in comparison with that on bare electrode. The two anodic peaks are separated around 200 mV. Under optimal conditions, the catalytic peak currents obtained from DPV increase linearly with concentrations of DA and AA in the ranges of 1.0?×?10?5 to 1.0?×?10?3?mol·L?1. This electrode has good reproducibility, high stability in its voltammetric response, and low detection limit (micromolar) for both AA and DA. The modified electrode has been applied to the determination of DA and AA in injection.  相似文献   

9.
同时测定多巴胺和肾上腺素的大环镍膜修饰电极   总被引:4,自引:3,他引:4  
研究了大环镍膜修饰电极对多巴胺和肾上腺素的电化学响应特性;结果表明,该修饰电极对多巴胺和肾上腺素的电极反应具有良好的催化活性,多巴胺和肾上腺素在修饰电极上的氧化电位比在裸铂电极上分别负移了230mV和70mV,使二者的阳极峰得到很好的分离,且灵敏度大为提高;将该修饰电极用于多巴胺和肾上腺素的同时检测,获得满意结果,生物体中的主要干扰物质抗坏血酸和NO2^-等均不干扰测定。  相似文献   

10.
A novel route for the fabrication of neodymium hexacyanoferrate (NdHCF) modified glassy carbon electrodes (GCE) was proposed. The morphological characterization of NdHCF was examined by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The performances of the NdHCF/GCE were characterized with cyclic voltammetry and differential pulse voltammograms (DPV). The modified electrode showed excellent electrocatalytic effect and high stability toward the electrochemical oxidation of dopamine (DA) in phosphate buffer solution (pH 5.5) with a diminution of the anodic overpotential of 155 mV. The anodic peak currents increased linearly with the concentration of DA from 5.0×10?7 to 6.0×10?4 M with a detection limit of 1.0×10?8 M (S/N=3). The most important is that the modified electrode could be used for the determination of DA in the presence of an ascorbic acid concentration as large as 100‐fold that of DA. The proposed method was used to determine DA in DA‐hydrochloride injection and showed excellent sensitivity and recovery. The ease of fabrication, high stability, and low cost of the modified electrode are the promising features of the proposed sensor.  相似文献   

11.
A carbon paste electrode modified with electropolymerized fills of isonicotinic acid was developed.The modified electrode shows excellent electrocatalytic activity toward the oxidation of both dopamine(DA)and epinephrine(EP).Separation of the reduction peak potentials for dopamine and epinephrine was about 357 mV in pH 5.3 phosphate buffer solution(PBS)and the character was used for the detection DA and EP simultaneously.The peak currents increase linearly with DA and EP concentration over the range of 8.0×10-5 to 7.0×10-4 mol/L and 5.0×10-6 to 1.0×10-4 mol/L with detection limits of 2 × 10-5 and 1×10-6 mol/L,respectively.The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid(AA).  相似文献   

12.
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.  相似文献   

13.
《Analytical letters》2012,45(17):3088-3099
Abstract

Iron nanoparticles (INPs) were dispersed in Nafion solution to obtain a homogeneous INP-Nafion dispersion, and then a drop of this dispersion was cast on the surface of a carbon paste electrode (CPE) to fabricate an INP-Nafion-modified electrode. The electrochemical behavior of dopamine (DA) at this modified electrode was studied by cyclic voltammetry in a pH 7.0 Britton-Robinson (B-R) buffer solution. The result showed that the modified CPE exhibited an obvious electrocatalytical response toward DA, with the anodic and cathodic peak potentials shifted negatively and positively respectively, and great enhance of the peak currents at the scan rate of 100 mV s?1. The effects of carbon paste constitution, amount of the dispersion, pH, and scan rate were investigated. Under the optimum experimental conditions, the peak currents determined by differential pulse voltammetry showed an excellent linear relationship with DA concentration in the range from 10 to 110 µM with the detection limit of 3.3 µM. In addition, ascorbic acid and some other possible interferents did not interfere with the voltammetric sensing of DA, and this method also had good stability and reproducibility.  相似文献   

14.
An electrochemically functional nanocomposite through the adsorption of methylene blue onto the multi-walled nanotubes (MB-MWNTs) was prepared, and a sensitive voltammetric sensor was fabricated. The modified electrode showed excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) in 0.1 M phosphate solution medium (pH 3.0). Compared to the bare electrode, the MB-MWNTs film-modified electrode not only remarkably enhanced the anodic peak currents of DA and UA, i.e., shifted the anodic peak potential of DA negatively, but also avoided the overlapping of the anodic peaks of DA and UA. The interference of ascorbic acid (AA) was eliminated. Under the optimized conditions, the peak separation between AA and DA and between DA and UA was 219 and 174 mV, respectively. In the presence of 1.0 mM AA and 10.0 μM UA, the anodic peak current was linear to the concentration of DA in the range of 0.4–10.0 μM with a detection limit of 0.2 μM DA. The anodic peak current of UA was linear to the concentration in the range of 2.0–20.0 and 20.0–200.0 μM with a lowest detection limit of 1.0 μM in the presence of 1.0 mM AA and 1.0 μM DA.  相似文献   

15.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

16.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

17.
《Electroanalysis》2017,29(12):2708-2718
An inexpensive stability−indicating anodic voltammetric method for rapid determination of two non‐classical β ‐lactam antibiotics; Meropenem (MP) and Ertapenem (EP) has been developed and validated. The method was based on the enhancement of voltammetric response at a disposable graphite pencil electrode (GPE). Differential pulse voltammetric (DPV) method was developed for quantification of both drugs in B−R buffer solution (pH 2.0) at GPE. The GPE displayed very good voltammetric behavior with significant enhancement of the peak current compared to glassy carbon electrode (GCE). Stress stability studies were performed using 0.5 M of either HCl or NaOH and H2O2. Mass and infrared spectroscopy were used for identification of degradants and their pathways were illustrated. Under optimal conditions, the peak currents showed a linear dependence with drug concentrations. The achieved limits of detection (LOD) were 1.23, 2.07 and 1.50 μM for MP and two waves of EP, respectively. The developed voltammetric method was successfully applied for direct determination of MP and EP in drug substances, pharmaceutical vials and in presence of either their corresponding hydrolytic, oxidative‐degradants or interfering substances with no potential interferences. The differential pulse voltammograms were highly advantageous and applicable in QC laboratories for rapid, selective micro‐determination of MP and EP.  相似文献   

18.
Thiagarajan S  Chen SM 《Talanta》2007,74(2):212-222
A novel biosensor was fabricated by electrochemical deposition of platinum and gold nanoparticles (nanoAu) with l-Cysteine on glassy carbon electrode. It was found that the nanoAu particle size distribution range was (50-80 nm), and the platinum particle size range was (200-300 nm). The hybrid film could be produced on gold and transparent indium tin oxide electrodes for different kind of studies such as electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) and electrochemical studies. The PtAu hybrid film was applied to the electro catalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at pH 4.0 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified electrode was quite effective not only to detect DA, AA and UA individually but also in simultaneous determination of these species in a mixture. The overlapping anodic peaks of DA, AA and UA were resolved into three well-defined voltammetric peaks in CV and DPV. The catalytic peak currents obtained from CV and DPV increased linearly with concentration. The relative standard deviation (% R.S.D., n = 10) for AA, DA and UA were less than 2.0% and DA, AA and UA can be determined in the ranges of 0.103-1.65, 0.024-0.384 and 0.021-0.336 mM, respectively. In addition, the modified electrode also shows good sensitivity, and stability. Satisfactory results were achieved for the determination of DA, AA and UA in dopamine injection solution, vitamin C tablets and human urine samples.  相似文献   

19.
In this study we demonstrated the influence of the cathodic pretreatment of poly(1‐aminoanthracene) (PAA) electropolymerized on a platinum electrode for determination of dopamine (DA). The DA electrochemical response was obtained after a cathodic pretreatment of the PAA electrode which consisted of applying a potential of ?0.7 V (vs. Ag/AgCl) for 3 s before each measurement. The pretreatment of the electrode changed the PAA electrocatalytic properties so that the electrode began to present electrochemical response to DA without interference of ascorbic acid (AA). The anodic peak currents determined by differential pulse voltammetry using pretreated PAA showed a linear dependence on the DA concentration from 0.56 to 100 µM with a detection limit of 0.13 µM and a correlation coefficient of 0.9986. The electrode exhibits a relative standard deviation of 1.2 % for ten successive measurements of a 0.5 mM DA solution. The analysis by scanning electron microscopy and atomic force microscopy show a homogeneous and nanostructured film with globular structures with diameter of about 20 nm. The analytical results obtained for DA determination at a pretreated PAA electrode in pharmaceutical formulation sample were in good agreement with those obtained by a comparative procedure at a 95 % confidence level. PAA electrode after the pretreatment showed electrochemical responses to DA with excellent selectivity, sensitivity, and high stability without interference of AA.  相似文献   

20.
A room-temperature ionic liquid N-butylpyridinium hexafluorophosphate was used as a binder to construct an ionic liquid modified carbon paste electrode, which was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The ionic liquid carbon paste electrode (IL-CPE) showed enhanced electrochemical response and strong analytical activity towards the electrochemical oxidation of dopamine (DA). A pair of well-defined quasireversible redox peaks of DA appeared, with the redox peaks located at 215 mV (E pa) and 151 mV (E pc) (vs. the saturated calomel electrode, SCE) in pH 6.0 phosphate buffer solution. The formal potential (E 0′) was calculated as 183 mV (vs. SCE) and the peak-to-peak separation as 64 mV. The electrochemical behavior of DA on the IL-CPE was carefully investigated. Under the optimal conditions, the anodic peak currents increased linearly with the concentration of DA in the range 1.0 × 10−6–8.0 × 10−4 mol/L and the detection limit was calculated as 7.0 × 10−7 mol/L (3σ). The interferences of foreign substances were investigated and the proposed method was successfully applied to the determination of DA injection samples. The IL-CPE fabricated was sensitive, selective and showed good ability to distinguish the coexisting ascorbic acid and uric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号