共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue-to-Orange Tunable Luminescence from Europium Doped Yttrium--Silicon--Oxide--Nitride Phosphors 下载免费PDF全文
Europium-doped yttrium-silicon-oxide-nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2O7 to nitride YSi3N5 state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465 nm with 300 nm excitation and a characteristic red emission of Eu^3+ at 612 nm with 230 nm excitation. The YSi3N5:EU phosphor shows a broad emission band centred at 595nm with some sharp peaks of Eu^3+ with 325nm excitation. The absorption of the studied phosphors increases from 450 to 700hm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390 nm excitation. 相似文献
2.
Silicon nanotubes (SiNTs) are novel one-dimensional nanomaterials, which have potential applications in nano- photoelectric devices, sensors and field-emission devices. The self-assembled silicon nanotubes have clear structures without metal catalysts. The structures are confirmed by TEM and HRTEM, and the UV-vis absorption spectra with an absorption peak near 685nm and PL spectra with widened strong emission near 436nm are measured by UV-vis spectrometer and spectroftuorophotometer. 相似文献
3.
Tris(8-hydroxyquinoline) aluminium doped poly-methyl-methacrylate (PMMA:Alq3) composite nanofibres are fabricated by electrospinning. The morphology of fibres is characterized by scanning electron microscopy. The photoluminescence of a series of the nanofibres with various contents of Alq3 to PMMA is investigated. UVvisible absorption and the PL spectra analysis are employed to analyse the interaction between the polymer and the luminescent molecule. 相似文献
4.
A systematic method to evaluate potentials of Ni2+-doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa2O4 and LiGa5O8 at room temperature. Transparent glass-ceramics containing Ni2+:LiGa5O8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media. 相似文献
5.
B.M. Monroy J. Aguilar-Hernández J. Fandiño G. Contreras-Puente J.C. Alonso 《Journal of luminescence》2006,121(2):349-352
Very thin (nanometric) silicon layers were grown in between silicon nitride barriers by SiH2Cl2/H2/NH3 plasma-enhanced chemical vapor deposition (PECVD). The multilayer structures were deposited onto fused silica and silicon substrates. Deposition conditions were selected to favor Si cluster formation of different sizes in between the barriers of silicon nitride. The samples were thermally treated in an inert atmosphere for 1 h at 500 °C for dehydrogenation. Room-temperature photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical properties of the structures. UV-VIS absorption spectra present two band edges. These band edges are well fitted by the Tauc model typically used for amorphous materials. RT-PL spectra are characterized by strong broad bands, which have a blue shift as a function of the deposition time of the silicon layer, even for as-grown samples. The broad luminescence could be associated with the confinement effect in the silicon clusters. After annealing of the samples, the PL bands red shift. This is probably due to the thermal decomposition of N-H bonds with further effusion of hydrogen and better nitrogen passivation of the nc-Si/SiNx interfaces. 相似文献
6.
Concentration and Temperature Dependences of YBO3:Bi^3+ Luminescence under Vacuum Ultraviolet Excitation 下载免费PDF全文
Bi^3+ doped YB03 phosphors are prepared by solid state reaction and their luminescent properties are investi- gated by using synchrotron radiation instrument, Concentration and temperature dependences of YBO3:Bi3+ luminescence under VUV/UV excitation is observed, The emission and excitation spectra are assigned, and the mechanism for these phenomena is explored, which result from the energy transfer between Bi^3+ ions occupying different sites in YB03 crystal lattice. 相似文献
7.
Absorption spectra of BiSbO4 are studied. The electronic structure calculated by the DFT shows that BiSbO4 is a semiconductor, with direct band gap 2.96 eV, which is consistent with UV-visible diffuse reflectance experiment. The host lattice emission band is located at 440 nm under VUV excitation. Eu^3+ and Pr^3+ doped samples have high luminescence efficiency in emitting red and green light, respectively. From the partial density of states, Eu^3+ doped emitting spectrum, and the host crystal structure parameters, the relationship between structure and optical properties is discussed. It is found that the Eu^3+ ions occupied Bi^3+ sites, and there could be an energy transfer from Bi^3+ ions to RE^3+ ions. 相似文献
8.
We employ photoluminescence (PL) and time-resolved PL to study exciton localization effect in InGaN epilayers.By measuring the exciton decay time as a function of the monitored emission energy at different temperatures,we have found unusual behaviour of the energy dependence in the PL decay process. At low temperature, the measured PL decay time increases with the emission energy. It decreases with the emission energy at 200K, and remains nearly constant at the intermediate temperature of 12OK. We have studied the dot size effect on the radiative recombination time by calculating the temperature dependence of the exciton recombination lifetime in quantum dots, and have found that the observed behaviour can be well correlated to the exciton localization in quantum dots. This suggestion is further supported by steady state PL results. 相似文献
9.
Eu2+ and Dy3+ co-doped calcium aluminate, barium aluminate and strontium aluminate phosphors were synthesized at an initiating combustion temperature of 500 °C using urea as an organic fuel. The crystallinity of the phosphors was investigated by using X-ray diffraction (XRD) and the morphology was determined by a scanning electron microscope (SEM). The low temperature monoclinic structure for both CaAl2O4 and SrAl2O4 and the hexagonal structure of BaAl2O4 were observed. The effect of the host materials on the photoluminescence (PL) and phosphorescence properties were investigated by using a He-Cd Laser and a Cary Eclipse fluorescence spectrophotometer, respectively. The broad band emission spectra observed at 449 nm for CaAl2O4:Eu2+, Dy3+, 450 nm (with a shoulder-peak at 500 nm) for BaAl2O4:Eu2+, Dy3+ and 528 nm for SrAl2O4:Eu2+, Dy3+ are attributed to the 4f65d1 to 4f7 transition in the Eu2+ ion in the different hosts. 相似文献
10.
T.Ya. Gorbach G.Yu. Rudko P. S. Smertenko S. V. Svechnikov M.Ya. Valakh 《Applied Physics A: Materials Science & Processing》1994,58(2):183-186
Visible room-temperature luminescence of Anisotropically Chemically Etched (ACE) silicon under spontaneous chemical surface modification in HNO3:HF solution is reported. The material is investigated by SEM, AES, IR transmission and Raman scattering methods. 相似文献
11.
Ba2+-doped Sr2SiO4:Eu2+ phosphors were synthesized with the high-temperature solid-state reaction technique. The experimental results, summarized in the successful production of a single-phase powder with fine microstructure of spherical particles with smooth surface, suggest that Ba2+-doping favors the stabilization of α′-Sr2SiO4. Rietveld refinement of X-ray diffractograms suggests that Ba2+ and Eu2+ ions occupy the sites of Sr2+ in the lattice of α′-Sr2SiO4. The produced phosphors show two intense emission bands at green and yellow regions of spectrum, originated from Eu2+ ions accommodated at two different sites in the host crystal, whose peaks depend on the concentrations of Ba2+ and Eu2+. Intense and broad excitation spectra extend from ultraviolet to the blue region. 相似文献
12.
M.L.W. Thewalt 《Solid State Communications》2005,133(11):715-725
Recent high resolution spectroscopic studies of excitonic and impurity transitions in high-quality samples of isotopically enriched Si have dramatically expanded our understanding of the effects of isotopic composition on the electronic properties of semiconductors. Prior to these studies on Si, the results for other semiconductors, focusing mainly on the isotopic dependence of the electronic band gap energy EG in the T→0 limit, could all be explained within the virtual crystal approximation (VCA), in which only the average isotopic mass was relevant. Remarkably, not only were the effects of isotopic randomness observable in natural Si (when compared to enriched 28Si), but the random isotopic distribution present in natural Si was found to be the true source of what had been thought of as ‘fundamental’ spectroscopic limits in Si, including the linewidths of bound exciton emission lines and impurity absorption transitions, and the ‘intrinsic’ acceptor ground state splitting. Many of these transitions are far narrower in highly enriched 28Si than in the most perfect natural Si, challenging existing spectroscopic methods, and opening up new possibilities for precision measurements, and for the observation of new physics. 相似文献
13.
The site-selective excitation and emission spectroscopy, and luminescence decay have been investigated under a pulsed, tunable, narrowband dye laser of the 5D0→7F0 region in the europium ions-doped lead tungstate PbWO4 (PWO) in single crystal. In as-grown sample, the experimental results show that there is only one 7F0→5D0 excitation transition indicating the only one Eu3+ site in PbWO4 lattices. The sequential annealing treatments were conducted to investigate the effects of oxygen components on the microstructure environments of Eu3+ in the lattices. The site distribution of Eu3+ was changed by the annealing in air atmosphere, which could create new sites in PWO lattices. Confirmation of interstitial oxygen and interpretations of charge compensation mechanism for the observed new sites were discussed in the context of site-selective excitation and emission spectra. The main Eu3+ site is related to the charge compensation by the [(EuPb3+)-V″Pb-(EuPb3+)] complex; the other minor new sites after annealing are originated from [(EuPb3+)-O″i-(EuPb3+)] defects. Emission spectra excited by 355-laser and RT-Raman spectra were also measured. 相似文献
14.
The present paper focuses on the renormalization effects of the band gaps in the electronic band structure of the elemental semiconductors traced to zero-point vibrations. Electron-phonon interaction and volume changes (in combination with anharmonicity) are the underlying microscopic mechanisms, both dependent on M−1/2, M being the average isotopic mass. Thus isotopically controlled crystals offer an extraordinary opportunity to test the theoretical predictions with a variety of spectroscopic techniques. The paper discusses the theoretical predictions and their experimental verifications, exploiting derivative and photoluminescence spectroscopy. Illustrative examples on Si and Ge, drawn from the investigations of the authors, are presented. 相似文献
15.
A Novel Fully Depleted Air AlN Silicon-on-Insulator Metal--Oxide--Semiconductor Field Effect Transistor 下载免费PDF全文
A novel fully depleted air A1N silicon-on-insulator (SOD metai-oxide-semiconductor field effect transistor (MOS- FET) is presented, which can eliminate the self-heating effect and solve the problem that the off-state current of SOI MOSFETs increases and the threshold voltage characteristics become worse when employing a high thermal conductivity material as a buried layer. The simulation results reveal that the lattice temperature in normal SOI devices is 75K higher than the atmosphere temperature, while the lattice temperature is just 4 K higher than the atmosphere temperature resulting in less severe self-heating effect in air A1N SOI MOSFETs and A1N SOI MOSFETs. The on-state current of air A1N SOI MOSFETs is similar to the A1N SOI structure, and improves 12.3% more than that of normal SOI MOSFETs. The off-state current of A1N SOI is 6. 7 times of normal SOI MOSFETs, while the counterpart of air A1N SOI MOSFETs is lower than that of SOI MOSFETs by two orders of magnitude. The threshold voltage change of air A1N SOl MOSFETs with different drain voltage is much less than that of A1N SOI devices, when the drain voltage is Mased at 0.8 V, this difference is 28mV, so the threshold voltage change induced by employing high thermal conductivity material is cured. 相似文献
16.
O. Maksimov W.H. WangN. Samarth Martin MuñozM.C. Tamargo 《Solid State Communications》2003,128(12):461-466
We report photoluminescence (PL) and reflectivity measurements of Zn0.5Cd0.5Se epilayers grown by molecular beam epitaxy on InP substrates. The low-temperature PL spectra are dominated by asymmetric lines, which can be deconvoluted into two Gaussian peaks with a separation of ∼8 meV. The behavior of these peaks is studied as a function of excitation intensity and temperature, revealing that these are free exciton (FE) and bound exciton emission lines. Two lower energy emission lines are also observed and assigned to the first and second longitudinal optical phonon replicas of the FE emission. The temperature dependence of the intensity, line width, and energy of the dominant emission lines are described by an Arrhenius plot, a Bose-Einstein type relationship, Varshni's and Bose-Einstein equations, respectively. 相似文献
17.
J. A. Garcia A. Remón J. Piqueras 《Applied Physics A: Materials Science & Processing》1987,42(4):297-299
Photoluminescence of ZnO ceramics irradiated with electrons of 0.8 MeV and 2.6 MeV energy has been investigated. The irradiated samples have been annealed in air at temperatures up to 1100° C. Irradiation causes quenching of the PL green band and as a consequence a peak at 470 nm emerges. Results indicate that part of the quenching can be attributed to damage in the oxygen sublattice. 相似文献
18.
The congruent, stoichiometric, and Mg doped stoichiometric LiTaO3 single crystals have been successfully grown by the Czochralski technique. The evolution of defect structures caused by varying composition and post-growth processing has been evaluated from the optical absorption and photoluminescence measurements. Optical absorption studies showed that the UV absorption edge is very sensitive to the composition of LiTaO3 crystals. Photoluminescence of various LiTaO3 single crystals at room temperature was observed. The emission bands centered at 360, 430, and 530 nm were assigned to different defects, which can well show the defect information in LiTaO3 crystals. 相似文献
19.
20.
A phosphor Tb3+-doped ZnWO4 (ZWO:Tb) phosphors were prepared by a hydrothermal method. X-ray powder diffraction (XRD) analysis revealed that the as-obtained sample is pure ZnWO4 phase. The excitation and emission spectra indicated that the phosphor could be well excited by ultraviolet light (272 nm) and emit blue light at about 491 nm and green light at about 545 nm. Significant energy transfer from WO42− groups to Tb3+ ions has been observed. Two approaches to charge compensation are investigated: (a) 2Zn2+ = Tb3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Zn2+ = 2Tb3+ + vacancy. Compared with two charge compensation patterns in the ZnWO4:Tb3+, it has been found that ZnWO4:Tb3+ phosphors used Li+ as charge compensation show greatly enhanced bluish-green emission under 272 nm excitation. 相似文献