首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoprotector role of pigment dispersion in the melanophores of the crab, Chasmagnathus granulata, against DNA and oxidative damages caused by UV-A and UV-B was investigated. Intact and eyestalkless crabs were used. In eyestalkless crabs, the dorsal epidermis of the cephalothorax (dispersed melanophores) and the epidermis of pereiopods (aggregated melanophores) were analyzed. Intact crabs showed only dispersed melanophores in the two epidermis. Antioxidant enzymes activity and lipoperoxidation content were analyzed after UV-A (2.5 J/cm2) or UV-B (8.6 J/cm2) irradiation. DNA damage was analyzed by single cell electrophoresis (comet) assay, after exposure to UV-B (8.6 J/cm2). UV-A radiation increased the glutatione-S-transferase activity in the pereiopods epidermis of eyestalkless crabs (P<0.05). UV-B radiation induced DNA damage in the dorsal epidermis of eyestalkless crabs (P<0.05). In pereiopod epidermis of eyestalkless crabs, there was no significant difference between control and UV-B-exposed crabs. In the pereiopods epidermis of eyestalkless, the control group showed higher scores of DNA damage and approximately 50% of cellular viability. Because in eyestalkless and irradiated crabs the cellular viability was approximately 5%, it was not possible to observe nuclei for determination of DNA damage. The findings show that melanophores can play a role in the defense against harmful effects of a momentary exposure to UV radiation.  相似文献   

2.
Laser pretreatment protects cells of broad bean from UV-B radiation damage   总被引:17,自引:0,他引:17  
In order to determine the role of lasers in the stress resistance of broad bean (Vicia faba L.) to ultraviolet-B (UV-B) radiation, the embryos in seeds were exposed to He-Ne laser or CO2 laser radiation. Afterwards they were cultivated in Petri dishes in a constant temperature incubator until the lengths of epicotyls were nearly 3 cm. The epicotyls were then exposed to 1.02, 3.03 or 4.52 kJ m(-2) UV-B radiation, respectively, under 70 micromol m(-2) s(-1) photosynthetically active radiation (PAR) in a growth cabinet. Changes in the concentration of malondialdehyde (MDA), ascorbic acid (AsA) and UV-B absorbing compounds (absorbance at 300 nm) were measured to test the effects of laser pretreatment. The results showed that laser pretreatment of embryos enhanced UV-B stress resistance in the epicotyls of the broad bean by decreasing the MDA concentration and increasing the content of AsA and UV-B absorbing compounds. We suggest that those changes in MDA, AsA and UV-B absorbing compounds were responsible for the increase in stress resistance observed in the broad bean. This is the first investigation reporting the use of laser pretreatment to protect the cells of the broad bean from UV-B-induced damage.  相似文献   

3.
Ionizing radiation, especially gamma (γ) radiation, is assumed to be very effective for DNA damage due to formation of free radicals. DNA damage and inhibition of DNA damage produced on irradiation with 60Co gamma source were characterized by fluorescence spectrometry. Reduced form of glutathione (GSH) and its novel molybdenum glutathione (MoG) complex were employed for the protection of γ-radiation induced DNA damage. The spectroscopic results of the present study showed that the MoG complex is more efficient in protecting the double stranded DNA in vitro compared to reduced form of GSH.  相似文献   

4.
The thiol N-acetyl-L-cysteine (NAC) is a source of cysteine for the synthesis of the endogenous antioxidant glutathione (GSH) which is depleted by ultraviolet radiation. It is also associated with the scavenging of reactive oxygen species (ROS). In this study the effects of NAC were examined in cultured human fibroblasts during prolonged exposure to ultraviolet B (UVB), ultraviolet A (UVA) and visible irradiation (280-700 nm), delivered by a 150 W xenon-arc lamp. The alkaline comet assay was used to assess the DNA damage in individual cells. It was found that incubating skin and lung fibroblasts at 37 degrees C for 1 h with an optimal 6 mM NAC supplement prior to light exposure, significantly reduced the level of DNA damage in both cell types, however, the skin fibroblasts were less sensitive to xenon-arc lamp irradiation than lung fibroblasts. NAC incubation resulted in an initial delay in DNA damage when the cells were irradiated. There was also a significant reduction in the overall levels of DNA damage observed with continued irradiation. NAC significantly reduced the DNA damage produced in lung fibroblasts depleted of normal GSH protection by the glutamylcysteinyl synthetase inhibitor, L-buthionine-[S,R]-sulfoximine. Although the specific mechanism of NAC protection has not yet been elucidated, these results support the hypothesis that NAC may protect the cells directly, by scavenging ROS induced by UVA and visible radiation, and indirectly by donating cysteine for GSH synthesis.  相似文献   

5.
6.
The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ~420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes.  相似文献   

7.
The effects of vitamin E supplementation were evaluated in cultured human normal fibroblasts exposed to ultraviolet A radiation (320-380 nm) (UVA). Cells were incubated in medium containing alpha-tocopherol, alpha-tocopherol acetate or the synthetic analog Trolox for 24 h prior to UVA exposure. DNA damage in the form of frank breaks and alkali-labile sites, collectively termed single-strand breaks (SSB), was assayed by the technique of single cell gel electrophoresis (comet assay), immediately following irradiation or after different repair periods. The generation of hydrogen peroxide (H2O2) and superoxide ion (O2.-) was measured by flow cytometry through the oxidation of indicators into fluorescent dyes. It was observed that pretreatment of cells with any form of vitamin E resulted in an increased susceptibility to the photoinduction of DNA SSB and in a longer persistence of damage, whereas no significant change was observed in the production of H2O2 and O2.- reactive oxygen species, compared to untreated controls. These findings indicate that in human normal fibroblasts, exogenously added vitamin E exerts a promoting activity on DNA damage upon UVA irradiation and might lead to increased cytotoxic and mutagenic risks.  相似文献   

8.
Treatment of calf thymus deoxyribonucleic acid (DNA) with bleomycin-Fe(II) at 0 degree C for 5 min resulted in the formation of 8-hydroxyguanine (8-OH-Gua) residues in DNA in a dose dependent manner, in addition to the formation of base propenal, a DNA-degradation product. The amount of 8-OH-Gua was about one-hundredth of that of base propenal. Treatment of cellular DNA with bleomycin did not result in any increase of 8-OH-Gua even under conditions of 100% cell killing.  相似文献   

9.
The reaction of the stable free radical diphenylpicrylhydrazyl (DPPH·) with water treated by plasma radiation of air spark discharge immediately after irradiation and for 13 days after irradiation has been studied. The choice is due to the fact that peroxynitrous acid ONOOH, which can be generated by irradiation, is a donor of atomic hydrogen and the reaction with DPPH· allows the acid concentration to be determined. The formation of ONOOH has been detected by the 4th day after the treatment, [ONOOH] = (1.5 ± 0.5) × 10?5 mol/L. This finding confirms the earlier assumption that a complex containing peroxynitrite and peroxynitrous acid is produced in water and decomposes within 13 to 14 days.  相似文献   

10.
In this work, the chemical changes in calf thymus DNA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The DNA samples were irradiated for over 5 h and spectra were taken repeatedly every 30 min. In this approach the X-ray beam both damages and probes the samples. In most cases, XPS spectra have complex shapes due to contributions of C, N, and O atoms bonded at several different sites. We show that from a comparative analysis of the modification in XPS line shapes of the C 1s, O 1s, N 1s, and P 2p peaks, one can gain insight into a number of reaction pathways leading to radiation damage to DNA.  相似文献   

11.
Riboflavin can be photosensitized to produce reactive oxygen species. In the present study, a DNA damage assay was developed based on the photo reaction of riboflavin. In this test system, oxyresveratrol showed higher DNA protective effect than the well-known antioxidants Trolox and ascorbic acid. The results suggest potential applications for oxyresveratrol as an anti-aging agent and a riboflavin stabilizer.  相似文献   

12.
Halogenated phenols are widely used as biocides and are considered to be possibly carcinogenic to humans. In this report, a previously developed photoelectrochemical DNA sensor was employed to investigate DNA damage induced by tetra-halogenated quinones, the in vivo metabolites of halogenated phenols. The sensor surface was composed of a double-stranded DNA film assembled on a SnO2 semiconductor electrode. A DNA intercalator, Ru(bpy)2(dppz)2+, was allowed to bind to the DNA film and produce photocurrent upon light irradiation. After the DNA film was exposed to 300 μM tetrafluoro-1,4-benzoquinone (TFBQ), the photocurrent dropped by 20%. In a mixture of 300 μM TFBQ and 2 mM H2O2, the signal dropped by 40%. The signal reduction indicates less binding of Ru(bpy)2(dppz)2+ due to structural damage of ds-DNA in the film. Similar results were obtained with tetra-1,4-chlorobenzoquinone (TCBQ), although the signal was not reduced as much as TFBQ. Fluorescence measurement showed that TFBQ/H2O2 generated more hydroxyl radicals than TCBQ/H2O2. Gel electrophoresis proved that the two benzoquinones produced DNA strand breaks together with H2O2, but not by themselves. Using the photoelectrochemical sensor, it was also found that TCBQ covalently bound with DNA did not produce additional oxidative damage in the presence of H2O2. The combined photoelectrochemistry, gel electrophoresis, and fluorescence data revealed distinctive differences between TFBQ and TCBQ in terms of DNA adduct formation and hydroxyl radical generation.  相似文献   

13.
The damage caused by ionizing radiation and by autoxidation processes to the base moiety of deoxydinucleoside monophosphates d(TpA) and d(GpC) exposed in oxygenated solutions has been investigated. The same principal products are generated by both modalities. The products generated in largest yield have been identified as formamide and imidazolidine modifications derived from damaged thymine and cytosine moieties, respectively. These radiation-induced and autoxidation-induced lesions have been isolated by HPLC and characterized by 1H NMR spectroscopy including two-dimensional COSY spectroscopy. The possible biological significance of these lesions is discussed.  相似文献   

14.
UV-B radiation of 280 nm wavelength (UV280) and low intensity (2.0 W/m2) gives rise to an important oxygen evolution (OE) loss in photosystem II (PSII) particles isolated from the thylakoid membrane of plant chloroplasts on the one hand, and to structural changes, or transitions, in the proteins of the PSII complex on the other hand. The latter UV280 effect was studied in this work by Fourier transform infrared (FT-IR) spectroscopy. First, irradiation of the PSII particles with UV280 for about 40 min causes an almost complete loss of OE activity. The remaining OE after 15, 20, 30 and 40 min is respectively 52, 44, 27 and 12% of the OE activity in control PSH particles kept in darkness. Secondly, difference FT-IR spectra of PSII particles irradiated for 30 min, i.e., [PSII irradiated with UV280]-minus-[PSII non-irradiated], show that the UV280 light is at the origin of significant IR absorbance changes in several spectral regions: (i) amide I (1696-1620 cm(-1)) and amide II (1580-1520 cm(-1)), (ii) tyrosine side chain (1620-1580 cm(-1) and 1520-1500 cm(-1), i.e., the v8a, v8b and v19a vibrational modes, respectively), and (iii) chlorophylls (1750-1696 cm(-1)). Thirdly, comparison of the UV-B effect reported here with structural changes induced by heat-stress in PSII proteins [M. Joshi, M. Fragata, Z. Naturforsch. 54c (1999) 35-43] clearly indicates that the stability of the functional centers in the PSII complex is dependent on a dynamic equilibrium between a-helix conformers and extended chain (beta-strand) structures. In this framework, transient 'alpha-helix-to-beta-strand transitions' are susceptible of giving rise in vivo to recurrent changes in the activity of the PSII complex, and as such act as a control mechanism of the photosynthetic function in the thylakoid membrane.  相似文献   

15.
The purpose of this study was to evaluate the ability of the predominant carotenoids (lutein and zeaxanthin) of the macular pigment of the human retina, to protect SK-N-SH human neuroblastoma cells against DNA damage induced by different RNOS donors. Although astaxanthin has never been isolated from the human eye, it was included in this study because its structure is very close to that of lutein and zeaxanthin and because it affords protection from UV-light. DNA damage was induced by GSNO-MEE, a nitric oxide donor, by Na(2)N(2)O(3), a nitroxyl anion donor and by SIN-1, a peroxynitrite-generating agent. DNA damage was assessed using the comet assay, a rapid and sensitive single cell gel electrophoresis technique able to detect primary DNA damage in individual cells. The tail moment parameter was used as an index of DNA damage. The values of tail moment increased in all the samples incubated with the RNOS donors, indicating DNA impairment. Data obtained show that the ability of zeaxanthin, lutein, and astaxanthin to reduce the DNA damage depends on the type of RNOS donor and the carotenoid concentration used. All the carotenoids studied were capable of protecting against DNA damage in neuroblastoma cells when the cells were exposed to GSNO-MEE. However, a different behaviour was present when the other two RNOS donors were used. The presence of a carotenoid alone (without an RNOS donor) did not cause DNA damage. Spectrophotometric studies showed that the order with which tested carotenoids reacted with RNOS was not always in agreement with the DNA protection results. The data from this study provides additional information on the activities of the macular pigment carotenoids of the human retina.  相似文献   

16.
Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.  相似文献   

17.
The effect of UV-B radiation (UVBR, 280-315 nm) on growth rate during 72 h of incubation, was measured for two marine microalgae -Dunaliella tertiolecta (Chlorophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). The resulting inhibition of growth rate was analysed by calculating biological weighting functions (BWFs). The growth rate of D. tertiolecta was slightly more inhibited by UVBR (over the whole range of the spectrum) than was the growth rate of P. tricornutum, but the wavelength dependencies were the same. Our results were compared with results from photosynthesis experiments of Andreasson and W?ngberg [1] , where two methods, pulse amplitude modulation (PAM) fluorescence and carbon fixation, were measured for these same algae. The BWF for the growth rate, here, showed more wavelength dependency than the BWF for the previous two photosynthesis measurements - except for the carbon fixation BWF in P. tricornutum, which was closer to the BWF for growth rate. The wavelength dependency of the growth rate inhibition showed less variation between the species than the inhibition of the photosynthesis.  相似文献   

18.
Elastic scattering of 5-30 eV electrons within the B-DNA 5'-CCGGCGCCGG-3' and A-DNA 5'-CGCGAATTCGCG-3' DNA sequences is calculated using the separable representation of a free-space electron propagator and a curved wave multiple scattering formalism. The disorder brought about by the surrounding water and helical base stacking leads to a featureless amplitude buildup of elastically scattered electrons on the sugar and phosphate groups for all energies between 5 and 30 eV. However, some constructive interference features arising from diffraction are revealed when examining the structural waters within the major groove. These appear at 5-10, 12-18, and 22-28 eV for the B-DNA target and at 7-11, 12-18, and 18-25 eV for the A-DNA target. Although the diffraction depends on the base-pair sequence, the energy dependent elastic scattering features are primarily associated with the structural water molecules localized within 8-10 A spheres surrounding the bases and/or the sugar-phosphate backbone. The electron density buildup occurs in energy regimes associated with dissociative electron attachment resonances, direct electronic excitation, and dissociative ionization. Since diffraction intensity can be localized on structural water, compound H2O:DNA states may contribute to energy dependent low-energy electron induced single and double strand breaks.  相似文献   

19.
Chemically induced hairpin formation in DNA monolayers   总被引:5,自引:0,他引:5  
A naphthyridine dimer that binds specifically to G-G mismatches has been used to induce hairpin formation in oligonucleotides immobilized onto chemically modified gold surfaces. Surface plasmon resonance (SPR) imaging measurements of DNA microarrays were used to demonstrate that binding of the naphthyridine dimer to G-G mismatches within the stem portion of an immobilized 42-mer oligonucleotide could be used to induce hairpin formation that prevented hybridization of DNA complementary to the loop sequence. In addition, the selectivity of the naphthyridine dimer for G-G mismatches was verified through SPR imaging measurements of the hybridization adsorption of an 11-mer oligonucleotide to a four-component DNA array of zero- and single-base mismatch sequences.  相似文献   

20.
Raman spectra of collagen and DNA were discussed at different temperatures. The temperature-dependence of Raman intensity was obtained in the region from -150 to 200 degrees C. Four denaturation points at 0, 40, 68 and 90 degrees C of collagen and two peaks at 38 and 82 degrees C for DNA were obtained. The wavenumbers of many vibrational modes were found to increase for lower temperature, but the peak at 1302 cm(-1) of collagen and the peak at 1101 cm(-1) of DNA showed the opposite trend. In all of the vibrational modes of DNA, the bases showed the most sensitive to different temperatures and there is a pronounced shift of bands at 70 degrees C, the starting point of denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号