首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hollow fiber composite membrane involving Zr0.84Y0.16O1.92 (YSZ) as an oxygen ionic conductor and La0.8Sr0.2MnO3−δ (LSM) as an electronic conductor was explored for oxygen separation application. The hollow fiber precursor was prepared by the phase-inversion process, and transformed to a gas-tight ceramic by sintering at 1350 °C. The as-prepared fiber exhibited a thermal expansion coefficient of 11.1 × 10−6 K−1 and a three-point bending strength of 152 ± 12 MPa. An oxygen permeation flux of 2.1 × 10−7 mol cm−2 s−1 was obtained under air/He gradient at 950 °C for a hollow fiber of length 57.00 mm and wall thickness 0.16 mm. The oxygen permeation flux remained unchanged when the sweeping gas was changed from helium to high concentration of CO2. Considering the satisfactory trade-off between the permeability and stability, the YSZ–LSM hollow fiber is promising for oxygen production applications.  相似文献   

2.
Asymmetric dual-phase composite membranes for oxygen separation were conveniently fabricated by an acid leaching technique. A thin dense layer of Ce0.85Sm0.15O1.925/Sm0.6Sr0.4FeO3−δ was left by controlling the degree of acid leaching, and a porous substrate of Ce0.85Sm0.15O1.925 with a fluorite structure was formed after dissolution of Sm0.6Sr0.4FeO3−δ with a perovskite structure in HCl. Thus, a thin dense layer and a porous substrate can be fabricated in a single step in which traditional shrinkage mismatch and chemical reaction between thin dense layers and porous substrates can be avoided. The thickness of the dense layer can be controlled by varying the acid leaching time. Hence, dual-phase composite membranes with high oxygen flux can be obtained.  相似文献   

3.
Commercial deployment of membrane-based technology for high temperature gas separation requires the development of reliable processing of thin supported ceramic membranes. The asymmetric membranes should also demonstrate high oxygen flux in long term operation often encountered in stringent conditions. These requirements may be fulfilled by designing thin membrane films of chemically and mechanically strong CaTi0.9Fe0.1O3−δ oxide material, as prepared in this work. The supported membranes were produced by means of a versatile manufacturing protocol with potential for mass production. It makes use of tape-casting, co-lamination and co-sintering of green laminates. The porosity of the mechanical supports was tailored through the addition of different pore formers, like corn starch and ammonium oxalate, in order to form a well-connected porous network. As-produced 30-μm thin supported CaTi0.9Fe0.1O3−δ membranes were thoroughly characterized to establish relationships between manufacturing parameters and membrane microstructure. The oxygen permeation rates under air/argon gradient in the temperature range 800–1050 °C were investigated. It is concluded that pressure drop resistance in supports strongly contributed to reduce the oxygen flux. Appropriate selection of pore former type and content reduced this effect yielding increased oxygen flux, which became under control of bulk diffusion.  相似文献   

4.
Non-perovskite SrFeCo0.5O x (SFC2) was found to have high electronic and ionic conductivities as well as structural stability. At 800°C in air, total and ionic conductivities of 17 and 7 S·cm−1 were measured, respectively; the ionic transference number was calculated to be ≈0.4. This material is unique because of its high electronic conductivity and comparable electronic and ionic transference numbers. X-ray diffraction analysis showed that air-sintered SFC2 consists of three phase components, ≈75 wt% , ≈20 wt% perovskite , and ≈5 wt% rock salt CoO. Argon-annealed SFC2 contains brownmillerite Sr2(Fe1−x Co x )2O5 and rock salt CoO. Dense SFC2 membranes were able to withstand large pO2 gradients and retain mechanical strength. A 2.9-mm-thick disk membrane was tested in a gas-tight electrochemical cell at 900°C; an oxygen permeation flux rate ≈2.5 cm3(STP)·cm−2·min−1 was measured. A dense thin-wall tubular membrane of 0.75-mm thickness was tested in a methane conversion reactor for over 1,000 h. At 950°C, the oxygen permeation flux rate was ≈10 cm3(STP)·cm−2·min−1 when the SFC2 thin-wall membrane was exposed with one side to air and the other side to 80% methane balanced with inert gas. Results from these two independent experiments agreed well. The SFC2 material is a good candidate as dense ceramic membranes for oxygen separation from air or for use in methane conversion reactors.  相似文献   

5.
During the past decade, dense-type oxygen-permeable ceramic membranes have received considerable attention both in the fields of scientific research and industrial application1, 2. Such membranes have mixed oxygen-ionic and electronic conductivity, and they can permeate oxygen at high temperature under an oxygen gradient without the need of outside connecting line and electrodes. Envisioned applications range from small scale oxygen pumps for medical use to large scale integrated gasification …  相似文献   

6.
We have developed almost defect-free Matrimid/polyethersulfone (PES) dual-layer hollow fibers with an ultra-thin outer layer of about 10 × 10−6 m (10 μm), studied the effects of spinneret and coagulant temperatures and dope flow rates on membrane morphology and separation performance, and highlighted the process similarities and differences between single-layer and dual-layer hollow fiber fabrications. The compositions of the outer and inner layer dopes were 26.2/58.8/15.0 (in wt.%) Matrimid/NMP/methanol and 36/51.2/12.8 (in wt.%) PES/NMP/ethanol, respectively. It is found that 25 °C for both spinneret and coagulant is a better condition, and the fibers thus spun exhibit an O2/N2 selectivity of 6.26 which is within the 87% of the intrinsic value and a calculated apparent dense-layer thickness of about 2886 × 10−10 m (2886 Å). These dual-layer membranes also have impressive CO2/CH4 selectivity of around 40 in mixed gas tests. The scanning electron microscopy (SEM) studies show that low coagulant temperatures produce dual-layer hollow fibers with an overall thicker thickness and tighter interfacial structure which may result in a higher substructure resistance and decrease the permeance and selectivity simultaneously. The elemental analysis of the interface skins confirms that a faster inter-layer diffusion occurs when the fibers are spun at higher spinneret temperatures. Experimental results also reveal that the separation performance of dual-layer hollow fiber membranes is extremely sensitive to the outer layer dope flow rate, and the inner layer dope flow rate also has some influence. SEM pictures indicate that the macrovoid formation in dual-layer asymmetric hollow fiber membranes is quite similar to that in single-layer ones. It appears that macrovoids observed in this study likely start from local stress imbalance and weak points.  相似文献   

7.
The structure-property relationship of Fe-doped SrCoO3-δ was studied. With increase of Fe content in SrCo1-xFexO3-δ from x=0 to x=0.2, the phase composition changed progressively in the order of hexagonal→brownmillerite (main)+hexagonal→cubic (main)+brownmillerite→single cubic phase. Transition between the hexagonal/brownmillerite phase and the cubic phase took place with variation of the operating conditions, and was associated with remarkable changes in the electrical conductivity and oxygen permeation flux.  相似文献   

8.
To address the need for perfluoro polymers with higher Tg, we have prepared and characterized various perfluorodioxolane monomers via direct fluorination of the hydrocarbon precursors. These monomers were readily polymerized in bulk or in solution initiated by perfluorodibenzoyl peroxide. The polymers obtained have relatively high Tg(~160°C) and exhibited low material dispersion. These polymers are completely amorphous and soluble in fluorinated solvents. The polymers are also chemically and thermally stable (Tg > 300°C). Thus, these perfluorodioxolane polymers may be used as plastic optical fiber material where high Tg is required, such as in automobile and aircraft application. These perfluorodioxolane polymers were also investigated for use as gas separation membrane. Among these polymers, the copolymer of perfluoro (2‐methylene‐1,3‐dioxolane) and perfluoro (2‐methylene‐4,5‐dimethyl dioxolane) showed superior gas separation performance compared with the commercial perfluoro polymers for a number of gas pair, including CO2/CH4, He/CH4, H2/CH4, and N2/CH4. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
首次制成顺丁橡胶(PB)与具有二重液晶相转变(近晶相,向列相)的液晶化合物双4-(4’-乙氧基苯甲酰氧基)苯甲酸一缩乙二醇酯(DEBEB)的复合膜并研究了其富氧性能。PB/DEBEB复合膜在液晶含量10%时,室温下具有比基质聚合物PB膜大几倍的氧透过系数(po2)。透过系数与温度的关系曲线呈现“N”型特征。这些现象与液晶的二重相变行为和膜的形态结构有关。  相似文献   

10.
采用PFSS絮凝-膜分离法处理炼油废水.通过对PAC、PFS和PFSS的除油、CODcr、SS性能比较,确定了PFSS为较好的絮凝剂,探讨了絮凝剂用量、絮凝时间对絮凝效果的影响.通过对膜材料的分析,确定了聚氯乙烯-聚丙烯腈膜对炼油废水有较好的处理效果,探讨了进料流量、操作压力、温度对膜通量的影响.结果表明:当PFSS用量为50-70mg/L、反应时间为8min、进料流量为60L·h-1、操作压力为1.6Mpa、温度为40℃时,通过絮凝沉降、膜分离处理过程,炼油废水中的油、CODcr、SS的去除率分别达到98%、95%、93%以上.出水水质达到国家一级排放标准.  相似文献   

11.
Chirality plays an important role in the function of biological processes. For isolating only the desired enantiomer, various methods have been developed, such as high performance liquid chromatography and capillary electrophoresis1. But with these method…  相似文献   

12.
In this article, the phase compositions, thermal, mechanical and transport properties of both the SrCo0.8Fe0.2O3−δ (SCF) and the SrCo0.8Fe0.1Sn0.1O3−δ (SSCF) ceramic membranes were investigated systematically. As compared with the SCF membrane, the SSCF one had a more promoted thermal shock resistance, which related to its small thermal expansion coefficient between them and an enhanced composite structure for it. For the SCF membrane, a permeation rate of 1.9 × 10−6 mol cm−2 s−1 was obtained at 1000 °C and under the oxygen partial pressure gradient of PO2 (h)/PO2 (l) = 0.209 atm/0.012 atm; however, the permeation rate was 2.5 × 10−6 mol cm−2 s−1 for the SSCF one in the same measuring condition. In addition, both peak values of total electrical conductivity (σe) for SSCF sample appeared with increasing temperature. The second peak value of σe for SSCF one was regarded as the contribution from its minor phase, which appeared with the mixed conducting behavior resulting from partly Co-dissolving into its lattice.  相似文献   

13.
Summary To determine toxic organic compounds (methanol, ethanol, n-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone) in air a method was developed for their headspace gas chromatographic analysis with preconcentration in n-butanol (alcohols) and in n-pentanol (ketones). The distribution coefficients of analytes in the air-absorbent system have been measured: 1051 (MeOH), 5630 (EtOH), 6773 (n-PrOH), 307 (Me2CO), 580 (MeCOEt), 1035 (MeCOBu-i). The minimum detectable level (mg m−3) was determined as low as 0.9 (MeOH), 4.0 (EtOH), 0.9 (n-PrOH), 0.2 (Me2CO), 0.1 (MeCOEt), 0.4 (MeCOBu-i). The method was effectively used for gas effluent air control in the workplace and in the atmosphere. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

14.
The total conductivity and Seebeck coefficient of La2Ni0.9Fe0.1O4+δ with K2NiF4-type structure, studied in the oxygen partial pressure range from 10−5 to 0.5 atm at 973-1223 K, were analyzed in combination with the steady-state oxygen permeability, oxygen non-stoichiometry and Mössbauer spectroscopy data in order to examine the electronic and ionic transport mechanisms. Doping of La2NiO4+δ with iron was found to promote hole localization on nickel cations due to the formation of stable Fe3+ states, although the electrical properties dominated by p-type electronic conduction under oxidizing conditions exhibit trends typical for both itinerant and localized behavior of the electronic sublattice. The segregation of metallic Ni on reduction, which occurs at oxygen chemical potentials close to the low-p(O2) stability boundary of undoped lanthanum nickelate, is responsible for the high catalytic activity towards partial oxidation of methane by the lattice oxygen of La2Ni0.9Fe0.1O4+δ as revealed by thermogravimetry and temperature-programmed reduction in dry CH4-He flow at 573-1173 K. A model for the oxygen permeation fluxes through dense La2Ni0.9Fe0.1O4+δ ceramics, limited by both bulk ionic conduction and surface exchange kinetics, was proposed and validated.  相似文献   

15.
<正>Dense ceramic membranes with protonic and electronic conductivity have attracted considerable interest in recent years.In this paper,the powders of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were synthesized via the liquid citrate method,and the membranes of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were prepared by pressing followed by sintering.X-ray diffraction(XRD) was used to characterize the phase structure of both the powder and sintered membrane.The microstructure of the sintered membranes was studied by scanning electron microscopy(SEM).Hydrogen permeation through the SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membranes was carried out using gas permeation setup at 900℃.Hydrogen permeation flux of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membrane reaches up to 0.042 mL/ min cm~2 at H_2 partial pressure of 0.4 atm.The hydrogen permeation fluxes obtained in this paper are similar to that of SrCe_(0.95)Tm_(0.05)O_(3-δ),and Zr doping can increase mechanical strength of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membranes and the resistance to reducing circumstance.  相似文献   

16.
Measurements of oxygen permeation through dense composite membranes showed a considerable influence of processing conditions on the surface exchange kinetics, while the bulk ambipolar conductivity is almost unaffected by microstructural factors. Compared to the materials prepared via the glycine–nitrate process (GNP), the surface limitations to oxygen transport are significantly higher for dual-phase made of a commercial powder synthesized by spray pyrolysis. This difference in behavior may be related to compositional inhomogeneities in the grains of A-site deficient perovskite phase and an enhanced surface concentration of grain boundaries in the case of GNP-synthesized composite, which has also smaller grain size, slightly higher thermal expansion and lower total conductivity. No essential effects on Vickers hardness, varying in the range 6.3–6.5 GPa, were found. The deposition of porous catalyst layers onto the composite surface exposed to reducing environment leads to membrane decomposition. For the fabrication of tubular membranes, the cold isostatic pressing technique was, hence, combined with mechanical treatment to increase the specific surface area without incorporation of catalytically active components.  相似文献   

17.
Qinghua Yin  Y. S. Lin 《Adsorption》2006,12(5-6):329-338
The paper reports on effect of doping Ag+, Ni2+, Ca2+, Ba2+ or Zr4+ in La0.1Sr0.9Co0.9Fe0.1O3−δ (LSCF1991) on its oxygen sorption capacity and desorption rate. The dopant can be incorporated into LSCF1991 matrix causing lattice expansion. The oxygen sorption capacity and tendency for the disordered perovskite to ordered brownmillerite phase transition for these samples decrease in the order: LSCF1991 > LSCF-Ag > LSCF-Ni > LSCF-Ca > LSCF-Ba > LSCF-Zr. The oxygen desorption rate also decreases in the same order for the doped samples. Doping increases the tendency of the disorder to order phase transition and enhances oxygen desorption rate during oxygen desorption step. Doping Ag and Ni provides more pronounced enhancement in oxygen desorption rate. The results suggest that Ag and Ni doped LSCF1991 samples are promising sorbents for use in a high temperature sorption process for air separation.  相似文献   

18.
High-performance silicalite-1 membranes were synthesized on silica tubes by in-situ hydrothermal synthesis. By using the "solution-filling (SF)" method, the average flux of membranes with the SF method was improved by about 25% compared to that of the membranes without using the SF method; the flux and the separation factor of the membranes prepared with the SF method for an ethanol/water mixture at 60 ℃ were 0.99 kg/(m2·h) and 73, respectively. It was found that the membranes synthesized on silica tubes ex...  相似文献   

19.
Reverse osmosis was used for the separation of various types of heteropolyanions (HPA): [PW11O39M(H2O)] k (M = CoII, FeIII, CrIII), [(PW11O39Fe)2O]10– , and [PW11O39 · Fe n O x H y ] p from contaminant ions NO3 and Na+ that are usually introduced into the solution in the synthesis of HPA.Translated fromIzvestiya Akodemii Nauk. Seriya Khimicheskaya, No. 4, pp. 1009–1011, April, 1996.  相似文献   

20.
Uptodate,rapidpurificationofmixedproteininlargescalehasbeenanimportantresearchprojectinbioengineeringproductprocessing.Immobilizedmetalionaffinitychromatography(IMAC)isanefficientmethodextensivelyusedforaffinitypurificationofbiologicallyactivesubstance…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号