首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The model with the gauge group, containing one bidoublet and two triplets in the Higgs sector, is considered. The link between the constants determining the physical Higgs boson interactions and the neutrino oscillation parameters is found. It is shown that the observation of the ultrahigh-energy neutrinos with the help of the processes , gives us information on the singly charged Higgs bosons. The processes of the doubly charged Higgs bosons production, , are investigated. From the point of view of detecting the neutral Higgs bosons the process of the electron–muon recharge is studied. Received: 29 January 1999 / Revised version: 20 September 1999 / Published online: 3 February 2000  相似文献   

3.
Unified models incorporating right-handed neutrino in a symmetric way generically possess parity symmetry. If this is broken spontaneously, it results in the formation of domain walls in the early Universe, whose persistence is unwanted. A generic mechanism for the destabilization of such walls is a small pressure difference signalled by difference in free energy across the walls. It is interesting to explore the possibility of such effects in conjunction with the effects that break supersymmetry in a phenomenologically acceptable way. This possibility when realized in the context of several scenarios of supersymmetry breaking, leads to an upper bound on the scale of spontaneous parity breaking, often much lower than the GUT scale. In the left–right symmetric models studied, the upper bound is no higher than 1011 GeV but a scale as low as 105 GeV is acceptable.  相似文献   

4.
In the framework of a left–right model containing mirror fermions with gauge group SU(3) C ⊗SU(2) L ⊗SU(2) R ⊗U(1) Y, we estimate the neutrino masses, which are found to be consistent with their experimental bounds and hierarchy. We evaluate the decay rates of the Lepton Flavor Violation (LFV) processes μ, τμγ and τ. We obtain upper limits for the flavor-changing branching ratios in agreement with their present experimental bounds. We also estimate the decay rates of heavy Majorana neutrinos in the channels NW ± l , N l and N l , which are roughly equal for large values of the heavy neutrino mass. Starting from the most general Majorana neutrino mass matrix, the smallness of active neutrino masses turns out from the interplay of the hierarchy of the involved scales and the double application of seesaw mechanism. An appropriate parameterization on the structure of the neutrino mass matrix imposing a symmetric mixing of electron neutrino with muon and tau neutrinos leads to tri-bimaximal mixing matrix for light neutrinos.  相似文献   

5.
6.
7.
We consider supersymmetric model with Peccei–Quinn symmetry and study effects of saxion on the evolution of the universe, paying particular attention to the effects of thermal bath. The axion multiplet inevitably couples to colored particles, which induces various thermal effects. In particular, (i) saxion potential is deformed by thermal effects, and (ii) coherent oscillation of the saxion dissipates via the interaction with hot plasma. These may significantly affect the evolution of the saxion in the early universe.  相似文献   

8.
We analyze the general phenomenology of neutrinoless double beta decay in the minimal left–right symmetric model. We study under which conditions a New Physics dominated neutrinoless double beta decay signal can be expected in the future experiments. We show that the correlation among the different contributions to the process, which arises from the neutrino mass generation mechanism, can play a crucial role. We have found that, if no fine tuned cancelation is involved in the light–active neutrino contribution, a New Physics signal can be expected mainly from the $W_R$ $W_R$ channel. An interesting exception is the $W_L$ $W_R$ channel which can give a dominant contribution to the process if the right-handed neutrino spectrum is hierarchical with $M_1\lesssim $  MeV and $M_2,M_3\gtrsim $  GeV. We also discuss if a New Physics signal in neutrinoless double beta decay experiments is compatible with the existence of a successful Dark Matter candidate in the left–right symmetric models. It turns out that, although it is not a generic feature of the theory, it is still possible to accommodate such a signal with a KeV sterile neutrino as dark matter.  相似文献   

9.
10.
We extend the Type I seesaw and suggest a new   seesaw mechanism to generate neutrino masses within the left–right symmetric theories where parity is spontaneously broken. We construct a next to minimal left–right symmetric model where neutrino masses are determined irrespective of the B−LBL breaking scale and call it the new   seesaw mechanism. In this scenario B−LBL scale can be very low. This makes B−LBL gauge boson and the quasi-Dirac heavy leptons very light. These TeV scale particles could have large impact on lepton flavor and CP violating processes. We also shed light on the phenomenological aspects of the model within the reach of the LHC.  相似文献   

11.
12.
To generate the lepton and quark masses in the left–right symmetric models, we can consider a universal seesaw scenario by integrating out heavy fermion singlets which have the Yukawa couplings with the fermion and Higgs doublets. The universal seesaw scenario can also accommodate the leptogenesis with Majorana or Dirac neutrinos. We show that the fermion singlets can obtain their heavy masses from the Peccei–Quinn symmetry breaking.  相似文献   

13.
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS=1ΔS=1 and ΔS=2ΔS=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.  相似文献   

14.
We report the results of in-situ characterization of 87Rb atom cloud in a quadrupole Ioffe configuration (QUIC) magnetic trap after a radio-frequency (RF) evaporative cooling of the trapped atom cloud. The in-situ absorption images of the atom cloud have shown clear bimodal optical density (OD) profiles which indicate the Bose–Einstein condensation (BEC) phase transition in the trapped gas. Also, we report here, for the first time, the measured variation in the sizes of the condensate and thermal clouds with the final frequency selected in the frequency scan of the RF-field for evaporative cooling. These results on frequency-dependent sizes of the clouds are consistent with the theoretical understanding of the BEC phenomenon in the trap.  相似文献   

15.
16.
Motivated by the 3.8σ   deviation from no CP violation hypothesis for the CP asymmetry (CPA) difference between D0→K+KD0K+K and D0→π+πD0π+π, reported recently by LHCb and CDF, we investigate the CP violating effect due to the left–right (LR) mixing in the general LR symmetric model. In particular, we show that the large CPA difference could be explained in the non-manifest LR model.  相似文献   

17.
The matter sector of electroweak chiral Lagrangian up to dimension four operators for left–right symmetric models with a neutral light Higgs is provided. The connection of these operators to Yukawa couplings, anomalous gauge couplings and parameters in the matter sector of conventional electroweak chiral Lagrangian is made. It is shown that there exists proper parameter space to loosen constraint for the mass of right handed gauge boson from the mass difference of neutral K meson.  相似文献   

18.
19.
20.
We conduct several verification tests of the advection–reaction–diffusion flame-capturing model, developed by Khokhlov in 1995 for subsonic nuclear burning fronts in supernova simulations. We find that energy conservation is satisfied, but there is systematic error in the computed flame speed due to thermal expansion, which was neglected in the original model. We decouple the model from the full system, determine the necessary corrections for thermal expansion, and then demonstrate that these corrections produce the correct flame speed. The flame-capturing model is an alternative to other popular interface tracking techniques, and might be useful for applications beyond astrophysics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号