首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By employing the higher (N>5N>5)-dimensional version of the Wu–Yang ansatz we obtain magnetically charged new black hole solutions in the Einstein–Yang–Mills–Lovelock (EYML) theory with second (α2α2) and third (α3α3) order parameters. These parameters, where α2α2 is also known as the Gauss–Bonnet parameter, modify the horizons (and the resulting thermodynamical properties) of the black holes. It is shown also that asymptotically (r→∞r), these parameters contribute to an effective cosmological constant—without cosmological constant—so that the solution behaves de-Sitter (anti de-Sitter) like.  相似文献   

2.
To understand the effect of third order Lovelock gravity, $P$ $V$ criticality of topological AdS black holes in Lovelock–Born–Infeld gravity is investigated. The thermodynamics is further explored with some more extensions and in some more detail than the previous literature. A detailed analysis of the limit case $\beta \rightarrow \infty $ is performed for the seven-dimensional black holes. It is shown that, for the spherical topology, $P$ $V$ criticality exists for both the uncharged and the charged cases. Our results demonstrate again that the charge is not the indispensable condition of $P$ $V$ criticality. It may be attributed to the effect of higher derivative terms of the curvature because similar phenomenon was also found for Gauss–Bonnet black holes. For $k=0$ , there would be no $P$ $V$ criticality. Interesting findings occur in the case $k=-1$ , in which positive solutions of critical points are found for both the uncharged and the charged cases. However, the $P$ $v$ diagram is quite strange. To check whether these findings are physical, we give the analysis on the non-negative definiteness condition of the entropy. It is shown that, for any nontrivial value of $\alpha $ , the entropy is always positive for any specific volume $v$ . Since no $P$ $V$ criticality exists for $k=-1$ in Einstein gravity and Gauss–Bonnet gravity, we can relate our findings with the peculiar property of third order Lovelock gravity. The entropy in third order Lovelock gravity consists of extra terms which are absent in the Gauss–Bonnet black holes, which makes the critical points satisfy the constraint of non-negative definiteness condition of the entropy. We also check the Gibbs free energy graph and “swallow tail” behavior can be observed. Moreover, the effect of nonlinear electrodynamics is also included in our research.  相似文献   

3.
We derive various important thermodynamic relations of the inner and outer horizons in the background of the Taub–NUT (Newman–Unti–Tamburino) black hole in four-dimensional Lorentzian geometry. We compare these properties with the properties of the Reissner–Nordström black hole. We compute the area product, area sum, area subtraction, and area division of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From the area bound, we derive an entropy bound and an irreducible mass bound for both horizons. We further study the stability of such black holes by computing the specific heat for both horizons. It is shown that due to the negative specific heat, the black hole is thermodynamically unstable. All these calculations might be helpful in understanding the nature of the black hole entropy (both interior and exterior) at the microscopic level.  相似文献   

4.
Motivated by considerable interests of Myers–Perry black holes, we employ the perturbative method to obtain a family of extremal charged rotating black hole solutions in odd dimensional Einstein–Born–Infeld-dilaton gravity. We start with an extremal Myers–Perry black hole with equal angular momenta, and then by adding the dilaton field and the nonlinear Born–Infeld electrodynamics, we find an extremal nonlinearly charged rotating black holes. The perturbative parameter is assumed to be the electric charge qq and the perturbations are performed up to the third order. We then study the physical properties of these Born–Infeld-dilaton black holes. In particular, we show that the perturbative parameter, qq, the dilaton coupling constant, αα, and the Born–Infeld parameter, ββ, modify the Smarr formula and the values of the gyromagnetic ratio of the extremal charged rotating black holes.  相似文献   

5.
6.
7.
We investigate the Lifshitz black holes from the Ho?ava–Lifshitz gravity by comparing with the Lifshitz black hole from the 3D new massive gravity. We note that these solutions all have single horizons. These black holes are very similar to each other when studying their thermodynamics. It is shown that a second order phase transition is unlikely possible to occur between z=3,2z=3,2 Lifshitz black holes and z=1z=1 Ho?ava black hole.  相似文献   

8.
We show that electrically charged solutions within the Eddington-inspired Born–Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born–Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.  相似文献   

9.
By using the canonical Hamiltonian method, we obtain the mass and entropy of the black holes with general dynamical coupling constant λ in Ho?ava–Lifshitz Gravity. Regardless of whether the horizon is sphere, plane or hyperboloid, we find these black holes are thermodynamically stable in some parameter space and unstable phase also exists in other parameter space. The relation between the entropy and horizon area of the black holes has an additional coefficient depending on the coupling constant λ  , compared to the λ=1λ=1 case. For λ=1λ=1, the well-known coefficient of one quarter is recovered in the infrared region.  相似文献   

10.
We study the near-horizon geometry of extremal black holes in the z=3 Ho?ava–Lifshitz gravity with a flow parameter λ. For λ>1/2, near-horizon geometry of extremal black holes are AdS 2×S 2 with different radii, depending on the (modified) Ho?ava–Lifshitz gravity. For 1/3≤λ≤1/2, the radius v 2 of S 2 is negative, which means that the near-horizon geometry is ill-defined and the corresponding Bekenstein–Hawking entropy is zero. We show explicitly that the entropy function approach does not work for obtaining the Bekenstein–Hawking entropy of extremal black holes.  相似文献   

11.
We investigate slowly rotating black holes in the Ho?ava–Lifshitz (HL) gravity. For Λ W =0 and λ=1, we find a slowly rotating black hole of the Kehagias–Sfetsos solution in asymptotically flat spacetimes. We discuss their thermodynamic properties by computing mass, temperature, angular momentum, and angular velocity on the horizon.  相似文献   

12.
13.
It is well known that the Kerr–NUT–AdS–dS black hole admits two linearly independent Killing vectors and possesses a hidden symmetry generated by a rank-2 Killing tensor. The near-horizon geometry of an extremal Kerr–NUT–AdS–dS black hole admits four linearly independent Killing vectors, and we show how the hidden symmetry of the black hole itself is carried over by means of a modified Killing–Yano potential which is given explicitly. We demonstrate that the corresponding Killing tensor of the near-horizon geometry is reducible as it can be expressed in terms of the Casimir operators formed by the four Killing vectors.  相似文献   

14.
We study thermodynamics of black holes in the deformed Ho?ava–Lifshitz gravity with coupling constant λ  . For λ=1λ=1, the black hole behaves the Reissner–Norström black hole. Hence, this is different from the Schwarzschild black hole of Einstein gravity. A connection to the generalized uncertainty principle is explored to understand the Ho?ava–Lifshitz black holes.  相似文献   

15.
岳瑞宏  邹德成  于添翼  杨战营 《中国物理 B》2011,20(5):50401-050401
This paper presents a new metric and studies slowly rotating Gauss-Bonnet black holes with a nonvanishing angular momentum in five dimensional anti-de Sitter spaces.Taking the angular momentum parameter a up to second order,the slowly rotating black hole solutions are obtained by working directly in the action.In addition,it also finds that this method is applicable in higher order Lovelock gravity.  相似文献   

16.
17.
Lanczos–Lovelock models of gravity represent a natural and elegant generalization of Einstein’s theory of gravity to higher dimensions. They are characterized by the fact that the field equations only contain up to second derivatives of the metric even though the action functional can be a quadratic or higher degree polynomial in the curvature tensor. Because these models share several key properties of Einstein’s theory they serve as a useful set of candidate models for testing the emergent paradigm for gravity. This review highlights several geometrical and thermodynamical aspects of Lanczos–Lovelock models which have attracted recent attention.  相似文献   

18.
We study the Hawking radiation of spherically symmetric, asymptotically flat black holes in the infrared modified Ho?ava–Lifshitz gravity by applying the methods of covariant anomaly cancelation and effective action, as well as the approach of Damour–Ruffini–Sannan’s. These black holes behave as the usual Schwarzschild ones of general relativity when the radial distance is very large. We also extend the method of covariant anomaly cancelation to derive the Hawking temperature of the spherically symmetric, asymptotically AdS black holes that represent the analogues of the Schwarzschild AdS ones.  相似文献   

19.
Born–Infeld electrodynamics has attracted considerable interest due to its relation to strings and D-branes. In this paper the gravitational perturbations of electrically charged black holes in Einstein–Born–Infeld gravity are studied. The effective potentials for axial perturbations are derived and discussed. The quasi normal modes for the gravitational perturbations are computed using a WKB method. The modes are compared with those of the Reissner–Nordström black hole. The relation of the quasi normal modes with the non-linear parameter and the spherical index are also investigated. Comments on stability of the black hole and on future directions are madeThis revised version was published online in April 2005. The publishing date was inserted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号