首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of self-forming dynamic membrane on a porous ceramic support was studied. Pineapple juice of 12° Brix concentration was used in the experiments which were carried out at 25°C by circulating the pineapple juice at the applied pressure of 100, 200, and 300 kPa and at cross-flow velocities of 1.30–2.95 m s−1 through the ceramic membrane module for 1 h. The experimental data of flux and rejections showed that the dynamic membrane was well-formed after 30 min of circulation under the applied pressure of 300 kPa and at a cross-flow velocity of 2.0 m s−1 in which the steady values of flux and rejections of macromolecules and sugars obtained from the filtration mode were 6.0×10−3 m3/m2 h, 84–87% and 6%, respectively. The corresponding values for ultrafiltration by alumina membrane of MW cut-off 50,000, using equivalent conditions, were 15.8×10−3 m3/m2 h, 91% and 10.5%. Ultrafiltration was found to be more promising. The stability of the self-forming dynamic membrane was acceptable when subjected to change of filtration conditions. The permeation flux increased with cross-flow velocity and decreased when the applied pressure was reduced. The resistances for filtration by dynamic membrane and by ultrafiltration were calculated. For a porous support of large pore sizes, an in-pore blockage of solutes which were smaller than the membrane pores reduced the pore volume and induced fouling. Internal fouling resistance (Rf) was, therefore significant and responsible for the values of flux and rejection and was approximately 70% of total resistance. While in ultrafiltration, in which membrane with a smaller pore diameter was used, Rf was only 20% but Rp, the polarized layer resistance, was as high as 60% of total resistance.  相似文献   

2.
The theory of fouling dynamics in crossflow membrane filtration is compared with ultrafiltration experiments with suspensions of 0.12 μm silica colloids. It has been experimentally verified that colloidal fouling in crossflow filtration is a dynamics process from non-equilibrium to equilibrium and that the steady state flux is the limiting flux. With the cake concentration cg identified from an independent experiment and the specific cake resistance calculated by Carman–Kozeny equation, the time-dependent flux and the time to reach steady state in the experiments of this study are correctly predicted with the theory of fouling dynamics.  相似文献   

3.
4.
Effect of backpulsing on crossflow filtration of different process streams was studied. Laboratory scale experiments were conducted with synthetic electroplating wastewater containing Cr(OH)3 suspension. Porous ceramic membranes of various pore sizes (0.05–5.0 μm) were evaluated. Filtration experiments with and without backpulsing show that backpulsing is effective in minimizing membrane fouling. Up to five-fold increase in steady-state permeate flux and 100% flux recovery were observed. Theoretical aspects are reviewed to develop a better understanding of the critical parameters associated with high-pressure backpulsing.Pilot and commercial scale operating results on several industrial applications, such as yeast filtration, process slurry filtration and oily wastewater filtration are presented. Data analysis shows the critical importance of backpulsing in reducing long-term membrane fouling while allowing the realization of high product recovery. Optimization of process parameters with backpulsing typically results in higher flux and reduces the total capital cost required to achieve the desired production rate.  相似文献   

5.
Apart from considerations for hygienic operation, membrane cleaning is essential to maintain consistent permeability and selectivity of membrane systems for clarifying beer and beverages where balanced fractionation of particles/macromolecules is necessary. Experiments involved formulating and optimising chemical cleaning methods for a ceramic microfiltration membrane, which had been severely fouled during clarification of a commercial beer. The cleaning processes employed NaOH, HNO3, H2O2, and Ultrasil 11 as the chemical cleaning agents. The cleaning ability and cleaning kinetics of the processes were evaluated in parallel with the study of the fouling mechanism, formation and strength so as to elucidate the synergetic relationship between fouling and cleaning. A three-step cleaning mechanism was postulated. This led to the development of a fast and effective combined simultaneous caustic cleaning and oxidation method (CSCCO), which was able to restore 87% of the original membrane's water permeability within 8 min. Analysis suggested the concept of a cleaning energy barrier Ec and a cleaning rate constant kc0. This study confirmed the existence of a synergetic relationship between the prior fouling and optimum formulation of cleaner and optimal cleaning condition. The study varied beer filtration conditions. Transmembrane pressure (TMP) and crossflow velocity during fouling appeared to have a minimal effect on the membrane's subsequent cleanability, especially when the powerful CSCCO process was employed. The number of previous fouling/cleaning cycles was influential. A complete removal of the residual fouling, formed on the virgin membrane's surface proved beyond the means of the harsh chemical cleaning used under any conditions. The degree of residual fouling eventually reached a plateau and a level of 87% of the original water flux could be restored repeatedly.  相似文献   

6.
《中国化学快报》2023,34(8):108020
Membrane filtration is one of the effective approaches to harvest microalgae for industrial biofuel production. However, during the filtration process, microalgae cells and extracellular organic matter (EOM) will deposit on the membrane surface leading to reversible membrane fouling that can be removed by physical methods. When hydrophobic EOM is adsorbed on the membrane surface or inside pores, it will build up a gel layer, causing irreversible membrane fouling. Irreversible fouling can only be removed using chemical methods that will decrease membrane lifespan and increase operational costs. Here, we introduce a versatile superhydrophilic membrane with photo-Fenton self-cleaning property, which can prevent the reversible fouling and remove the irreversible fouling. Tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) were co-deposited on the polyvinylidene fluoride (PVDF) membrane via Schiff base and Michael addition reactions, and β-FeOOH nanorods were inlaid on the membrane surface by in situ mineralization. The water contact angle of the modified membrane is reduced from 120° to 0° Under 60 min visible light, the hydroxyl radical (·OH) generated by the photo-Fenton reaction degraded the irreversible fouling that blocked membrane pores. The irreversible fouling rates of modified membrane was reduced from 39.57% to 3.26%, compared with the original membrane. Microalgae harvesting results illustrated that the membrane has a high flux recovery rate (FRR) of 98.2%, showed excellent passive antifouling and active antifouling performance. We believe this work will spark a novel platform for optimizing energy-efficient microalgae harvesting separation membrane modules. In addition, this method of anti-fouling filtration for microorganisms can be extended to the industrial production of various bioenergy sources and will have very promising practical applications.  相似文献   

7.
Using the resistance-in-series (RIS) approach to permeate flux modeling, a general relationship between permeate flux, transmembrane pressure, cross-flow velocity, and feed kinematic viscosity was developed for the tubular ultrafiltration (UF) of synthetic oil-in-water emulsions. The fouling layer resistance, Rf, was 63% of the total membrane resistance, Rm′; however, concentration polarization was the predominant factor controlling resistance in the tubular UF system. An explicit form of the resistance index, Φ, was postulated based on the observed interactions between Φ, cross-flow velocity and feed kinematic viscosity and the RIS model was modified to further describe the interactions between permeate flux and operational parameters. The modified model adequately predicted flux–pressure data over the range of experimental variables examined in this study. Additionally, a set point operating pressure was determined as a function of cross-flow velocity and feed viscosity to achieve a balance between polarization and total membrane resistance.  相似文献   

8.
Membrane bioreactors (MBR) combine biological processes with membrane filtration. Advantages of MBR in municipal wastewater treatment include high effluent quality and reduced space requirements. Steady operation of membrane plants requires careful management of membrane fouling. Even though it might be impossible to prevent, fouling can be limited by techniques such as gas sparging. The injection of gas bubbles increases the shear stress and removes fouling material from the membrane surface. Most cited literature on air sparging refers to short-term experiments, often times in bench scale. The aim of this study was therefore long-term investigations in pilot plant scale of a 70 L reactor fed with glucose-based synthetic wastewater. The main focus was on enhancing permeate flux by air sparging. The results showed that using air sparging significantly increased the permeate flux was doubled even over several weeks. The findings were interpreted using the dimensionless fouling and shear stress number. The fouling resistance was found to decrease significantly with air injection ratios between 0.4 and 0.5. When air sparging was applied after a period without air sparging, the shear stress number doubled. This increase in shear led to a reduction of the fouling number by approximately 30%. During several weeks air sparging only a slow fouling number increase was. In contrast to that after air sparging was ceased, an exponential increase of the fouling number was observed.  相似文献   

9.
Membrane distillation was used to produce demineralized water from ground water. The influence of feed water pretreatment carried out in a contact clarifier (softening with Ca(OH)2 and coagulation with FeSO4 · 7H2O) followed by filtration, on the process effectiveness was evaluated. It was found that the chemical pretreatment decreased the membrane fouling; however, the degree of water purification was insufficient because precipitation of small amounts of deposit on the membrane surface during the process operation was still observed. The permeate flux was gradually decreasing as a result of scaling. The morphology and composition of the fouling layer were studied using scanning electron microscopy coupled with energy dispersion spectrometry. The presence of significant amounts of silica, apart from calcium and magnesium, was determined in the formed deposit. The removal of foulants by heterogeneous crystallization performed inside the filter (70 mesh), assembled directly at the module inlet, was found to be a solution preventing the membrane scaling. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

10.
Cross-flow ultrafiltration and microfiltration have been used to recover refined soy sauce from soy sauce lees for over 25 years. The precise mechanism which dominated the permeate flux during batch cross-flow filtration has not been clarified. In the present study, we proposed a modified analytical method incorporated with the concept of deadend filtration to determine the initial flux of cross-flow filtration and carried out the permeate recycle and batch cross-flow filtration experiments using soy sauce lees. We used UF and MF flat membrane (0.006 m2 polysulfone) module under different transmembrane pressures (TMP) and cross-flow velocities. The modified analysis provided an accurate prediction of permeate flux during the filtration of soy sauce lees, because this model can consider the change in J0 at initial stage of filtration which was caused by the pore constriction and plugging inside membrane, and these changes may not proceed when the cake was formed on the membrane surface. Mean specific resistance of the cake increased with TMP due to the compaction of the cake and decreased with cross-flow velocity due to the change of deposited particle size, but less depended on the membrane in the present study. These results indicate that the value of J0 determined by modified method was relevant to exclude the effects of the initial membrane fouling by pore constriction due to protein adsorption and plugging with small particles. The modified analytical method for the cake filtration developed in the present study was considered to be capable of selecting an appropriate operating conditions for many cross-flow filtration systems with UF, MF membranes.  相似文献   

11.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

12.
This paper investigates the reversibility of membrane fouling by activated sludge in a membrane bioreactor equipped with a 0.1 μm pore ceramic membrane. The membrane was submitted to a series of tests in which the permeate flux, the transmembrane pressure (TMP) or the circulation velocity were successively varied in cycles by step increments or decreases. When the permeate flux is set below the critical flux, the TMP remains stable and fouling is reversible. On the contrary, when the critical flux is exceeded, the TMP increases and does not stabilize, as in dead-end filtration. The fouling formed is partly irreversible when the flux is lowered again. When the TMP is first increased up to 400 kPa and then decreased back at constant velocity, no hysteresis is found on the flux–TMP graph, showing that fouling is reversible in this case. Velocity cycles were performed by first lowering the velocity from 5 to 1 m/s and raising it again to 5 m/s. In this case again, the fouling induced by reducing the velocity was found to be reversible. However, when the same pressure and velocity cycle tests were performed with activated sludge collected in the aeration tank of a classical wastewater treatment plant, fouling was found to be partly irreversible, showing that the cake formed in the absence of shearing is much more cohesive. In the final part of the paper, we tested a hydrodynamic method of fouling control consisting in alternating short periods of filtration (1–4 s) and short periods of washing (1 or 2 s) at low TMP and high velocity. This method yielded to a 20% permeate flux increase with a 10% reduction in hydraulic energy consumption for classical plant activated sludge.  相似文献   

13.
Fouling by natural organic matter, such as humic substances, is a major factor limiting the use of microfiltration for water purification. The objective of this study was to develop a fundamental understanding of the underlying mechanisms governing humic acid fouling during microfiltration using a combined pore blockage–cake filtration model. Data were obtained over a range of humic acid concentrations, transmembrane pressures, and stirring speeds. The initial flux decline was due to pore blockage caused by the deposition of large humic acid aggregates on the membrane surface, with a humic acid deposit developing over those regions of the membrane that have first been blocked by an aggregate. The rate of cake growth approaches zero at a finite filtrate flux, similar to the critical flux concept developed for colloidal filtration. The data were in good agreement with model calculations, with the parameter values providing important insights into the mechanisms governing humic acid fouling during microfiltration. In addition, the basic approach provides a framework that can be used to analyze humic acid fouling under different conditions.  相似文献   

14.
Previous studies of protein fouling during microfiltration have shown significant discrepancies between filtrate flux data and predictions of the classical pore blockage, pore constriction, and cake filtration models. A new mathematical model was developed for the filtrate flux which accounts for initial fouling due to pore blockage and subsequent fouling due to the growth of a protein cake or deposit over these initially blocked regions. The model explicitly accounts for the inhomogeneity in the cake layer thickness over different regions of the membrane arising from the time-dependent blockage of the pore surface. The model was shown to be in excellent agreement with experimental data obtained during the stirred cell filtration of bovine serum albumin solutions through polycarbonate track-etched microfiltration membranes over the entire course of the filtration. The model provides a smooth transition from the pore blockage to cake filtration regimes, eliminating the need to use different mathematical formulations to describe these two phenomena. In addition, the model provides the first quantitative explanation for some of the unusual observations reported previously in investigations of protein microfiltration. The results provide important insights into the underlying mechanisms of protein fouling during microfiltration. Copyright 2000 Academic Press.  相似文献   

15.
Poly(ether sulfone) 10 kDa ultrafiltration membranes were modified by photolysis using ultraviolet light and graft polymerization of hydrophilic monomers onto the membrane surface to create more hydrophilic and lower fouling membrane surfaces. The modified membrane surfaces were characterized by FTIR/ATR and captive bubble contact angle measurements to determine chemical and hydrophilicity changes during modification. The modified membranes were compared with an unmodified poly(ether sulfone) (control) membrane as well as a commercial regenerated cellulose and a low protein adsorbing poly(ether sulfone) membrane using a newly developed standardized filtration protocol with 1 wt% bovine serum albumin. The best performing modified membrane was with N-vinyl-2-pyrrolidinone and showed a 25% increase in hydrophilicity, a 49% decrease in bovine serum albumin fouling, and a 4% increase in bovine serum albumin retention compared to the unmodified poly(ether sulfone) membrane. While the regenerated cellulose membrane had the lowest fouling and the low protein adsorbing membrane had the highest flux of all tested membranes, the N-vinyl-2-pyrrolidinone-modified membranes had the best combination of low fouling and high flux.  相似文献   

16.
The conventional operating membrane of a laboratory membrane filtration process is to apply controlled transmembrane pressures to the retentate side of the membrane, with the permeate side open ended. Often the minimum transmembrane pressure available is sufficient to cause membrane fouling in a given system. A membrane rig has been built which monitors transmembrane pressure in increments of 0.001 bar and by pumping permeate at a specified rate controls the flux to be constant. The technique used allows sensitive detection of trace fouling. Under a variety of low flux conditions fouling was not observed and it was found to be useful to produce an experimentally related definition of two types of critical flux. In the first definition a `strong form' of critical flux exists if the flux of a suspension is identical to the flux of clean water at the same transmembrane pressure. In the second definition a `weak form' of the critical flux exists if the relationship between transmembrane pressure and flux is linear, but the slope of the line differs from that for clean water. This paper describes how the use of this operating mode led to the successful experimental measurements of critical fluxes for two colloidal silica suspensions, BSA solution and a baker's yeast suspension with a 50k MWCO membrane. These measurements could not be made successfully in constant-pressure mode. The paper also reports experimental evidence in support of a `strong form' of the critical flux for the filtration of X30 silica suspension. Finally, we report the effect of membrane pore size on critical flux measurements for the three types of feed fluids.  相似文献   

17.
The study deals with the use of a gas-liquid two-phase flow to reduce particle membrane fouling in organic hollow fibres by injecting air directly into the feed stream. A theoretical approach of slug flow in fibres demonstrates that the slugs created inside the fibres induce high wall shear stresses. Moreover, the membrane surface is alternately submitted to positive and negative shear stresses. This succession of stresses is expected to prevent filtered particles from settling on the membrane surface and then enhance the ultrafiltration mass transfer. Experiments were carried out with clay suspensions in hollow fibre membrane. A range of various air velocities and particle concentrations was examined and the effect of a steady gas flow was compared to that of an intermittent one. As expected, the injecting air process leads to an increase of the permeate flux by up to 110% for Ug=1 m s−1 (flux multiplied by 2.1), for all the various concentrations studied. Furthermore, even at a low air velocity a significant enhancement can be achieved (+60% for Ug=0.1 m s−1, flux multiplied by 1.6). An intermittent gas flow seems to be less effective than a steady one in similar experimental conditions.  相似文献   

18.
Nitrogen-based plasma systems such as N2, NH3, Ar/NH3, and O2/NH3 were used to modify microporous polyethersulfone membranes. Treatments were designed to alter the surface chemistry of the membranes to create permanently hydrophilic surfaces. Contact angle measurements taken initially, as well as 1 year post-treatment confirmed that treatments using O2/NH3 plasmas (with a 5:3 gas flow ratio) were successful in achieving our designed goals. Analyses by FT-IR and XPS established the incorporation of NHx and OH species in the PES membranes. Moreover, the plasma penetrates the thickness of the membrane, thereby modifying the entire membrane cross-section. Optical emission spectroscopy studies of excited state species present in the modifying gases revealed the presence of OH*, which was not present in a 100% ammonia plasma, suggesting OH* must play a critical role in the membrane modification process. Investigations using bubble point analysis, differential scanning calorimetry, and scanning electron microscopy demonstrate there is no damage occurring under these specific treatment conditions. The usefulness of this treatment is revealed by increased water flux, reduced protein fouling, and greater flux recovery after gentle cleaning when compared to an untreated membrane.  相似文献   

19.
Membrane foulants and gel layer formed on membrane surfaces were systematically characterized in a submerged membrane bioreactor (MBR) under sub-critical flux operation. The evaluation of mean oxidation state (MOS) of organic carbons and Fourier transform infrared (FT-IR) spectroscopy demonstrated that membrane foulants in gel layer were comprised of not only extracellular polymeric substances (EPS) (proteins, polysaccharides, etc.) but also other kinds of organic substances. It was also found that fine particles in mixed liquor had a strong deposit tendency on the membrane surfaces, and membrane foulants had much smaller size than mixed liquor in the MBR by particle size distribution (PSD) analysis. Gel filtration chromatography (GFC) analysis showed that membrane foulants and soluble microbial products (SMP) had much broader distributions of molecular weight (MW) and a larger weight-average molecular weight (Mw) compared with the influent wastewater and the membrane effluent. Scanning electron microscopy (SEM) and energy-diffusive X-ray (EDX) analysis indicated that membrane surfaces were covered with compact gel layer which was formed by organic substances and inorganic elements such as Mg, Al, Fe, Ca, Si, etc. The organic foulants coupled the inorganic precipitation enhanced the formation of gel layer and thus caused membrane fouling in the MBR.  相似文献   

20.
《Comptes Rendus Chimie》2007,10(9):803-812
One of the critical issues for the application of low-pressure membrane processes (microfiltration, MF or ultrafiltration, UF) as pre-treatment processes for freshwater preparation is membrane fouling due to natural organic matter (NOM). The aim of this preliminary study is to contribute to a better understanding of the fouling phenomena occurring on a regenerated cellulose UF membrane fouled with a humic acid cake deposit. The originality of this work is based on a double approach on surface analysis at both macroscopic and microscopic scales. It is presently reported that humic acid fouling is mainly governed by cake formation, which plays a major role in flux decline via the well-known model of resistances in series. We obtained that the adsorbed resistance is 2% of the total resistance while the cake resistance is 52% of the total resistance, which is higher than that of the virgin membrane. From field emission gun scanning electron microscopy (FESEM) it was found for the first time that the humic acid cake is well organized, and particularly in fractal forms. The fractal dimension (FD) of the cake is determined as 2.52, which is in good agreement with the theoretical fractal dimension of particle–cluster aggregation underlying diffusion-limited aggregation (FD = 2.51). This new microscopic fouling index decreases with the presence of cake and can be correlated with the decrease of the hydraulic permeability. The classical silt density index (SDI) and the new modified fouling index (denoted MFI-UF) were obtained and also proved the presence of the cake. To complete this approach transmembrane streaming potential (denoted SP) measurements were conducted with a new homemade apparatus developed in our lab and presented for the first time in the present article, helped us to observe also a penetration of low molecular fractions of humic acid inside the membrane. Indeed the displacement of the isoelectric point (iep) of the membrane from 2.3 to 1.5 for the virgin and fouled membranes, respectively, permitted to illustrate this penetration. This newly designed SP apparatus is a semi-automatic tool assisted by a software denoted as proFluid 1.2. Furthermore, preliminary experiments with seawater were realized in order to estimate the influence of seawater filtration on the hydraulic permeability and SP parameters for the RC 100-kDa membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号