首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The grand partition functions Z(T,B)Z(T,B) of the Ising model on L×LL×L triangular lattices with fully periodic boundary conditions, as a function of temperature T and magnetic field B  , are evaluated exactly for L<12L<12 (using microcanonical transfer matrix) and approximately for L?12L?12 (using Wang–Landau Monte Carlo algorithm). From Z(T,B)Z(T,B), the distributions of the partition function zeros of the triangular-lattice Ising model in the complex temperature plane for real B≠0B0 are obtained and discussed for the first time. The critical points aN(x)aN(x) and the thermal scaling exponents yt(x)yt(x) of the triangular-lattice Ising antiferromagnet, for various values of x=e−2βBx=e2βB, are estimated using the partition function zeros.  相似文献   

2.
Lattice artifacts in the 2d O(n) non-linear σ  -model are expected to be of the form O(a2)O(a2), and hence it was (when first observed) disturbing that some quantities in the O(3)O(3) model with various actions show parametrically stronger cutoff dependence, apparently O(a)O(a), up to very large correlation lengths. In a previous letter Balog et al. (2009) [1] we described the solution to this puzzle. Based on the conventional framework of Symanzik's effective action, we showed that there are logarithmic corrections to the O(a2)O(a2) artifacts which are especially large (ln3aln3a) for n=3n=3 and that such artifacts are consistent with the data. In this paper we supply the technical details of this computation. Results of Monte Carlo simulations using various lattice actions for O(3)O(3) and O(4)O(4) are also presented.  相似文献   

3.
Hadro-charmonium     
We argue that relatively compact charmonium states, J/ψJ/ψ, ψ(2S)ψ(2S), χcχc, can very likely be bound inside light hadronic matter, in particular inside higher resonances made from light quarks and/or gluons. The charmonium state in such binding essentially retains its properties, so that the bound system decays into light mesons and the particular charmonium resonance. Thus such bound states of a new type, which we call hadro-charmonium, may explain the properties of some of the recently observed resonant peaks, in particular of Y(4.26)Y(4.26), Y(4.32–4.36)Y(4.324.36), Y(4.66)Y(4.66), and Z(4.43)Z(4.43). We discuss further possible implications of the suggested picture for the observed states and existence of other states of hadro-charmonium and hadro-bottomonium.  相似文献   

4.
To complement existing knowledge of the density matrix γF(x,y)γF(x,y) of independent fermions for N   particles in one dimension under harmonic confinement, the corresponding matrix γIB(x,y)γIB(x,y) for impenetrable bosons is given for N=2N=2 and 3 (with the N=4N=4 form available also). For fermions the momentum density is then obtained and illustrated numerically for N=10N=10. The boson momentum density is studied analytically at high momentum p  , the coefficients of the p−4p−4 and p−6p−6 terms being tabulated for N=2–5N=25 inclusive. Their dependence on powers of N   is exhibited numerically. Finally, the functional relationship between γIB(x,y)γIB(x,y) and γF(x,y)γF(x,y) is formally set out and illustrated.  相似文献   

5.
6.
We study a matrix model obtained by dimensionally reducing Chern–Simons theory on S3S3. We find that the matrix integration is decomposed into sectors classified by the representation of SU(2)SU(2). We show that the N  -block sectors reproduce SU(N)SU(N) Yang–Mills theory on S2S2 as the matrix size goes to infinity.  相似文献   

7.
8.
We employ chaotic (?2?2 and ?4?4) inflation to illustrate the important role radiative corrections can play during the inflationary phase. Yukawa interactions of ?  , in particular, lead to corrections of the form −κ?4ln(?/μ)κ?4ln(?/μ), where κ>0κ>0 and μ   is a renormalization scale. For instance, ?4?4 chaotic inflation with radiative corrections looks compatible with the most recent WMAP (5 year) analysis, in sharp contrast to the tree level case. We obtain the 95% confidence limits 2.4×10−14?κ?5.7×10−142.4×10−14?κ?5.7×10−14, 0.931?ns?0.9580.931?ns?0.958 and 0.038?r?0.2050.038?r?0.205, where nsns and r   respectively denote the scalar spectral index and scalar to tensor ratio. The limits for ?2?2 inflation are κ?7.7×10−15κ?7.7×10−15, 0.929?ns?0.9660.929?ns?0.966 and 0.023?r?0.1350.023?r?0.135. The next round of precision experiments should provide a more stringent test of realistic chaotic ?2?2 and ?4?4 inflation.  相似文献   

9.
10.
We propose a network model with a fixed number of nodes and links and with a dynamic which favors links between nodes differing in connectivity. We observe a phase transition and parameter regimes with degree distributions following power laws, P(k)∼kP(k)k-γ, with γγ ranging from 0.20.2 to 0.50.5, small-world properties, with a network diameter following D(N)∼logND(N)logN and relative high clustering, following C(N)∼1/NC(N)1/N and C(k)∼kC(k)k-α, with αα close to 3. We compare our results with data from real-world protein interaction networks.  相似文献   

11.
12.
We show that the newly measured branching ratios of vector charmonia (J/ψJ/ψ, ψψ and ψ(3770)ψ(3770)) into γP, where P   stands for light pseudoscalar mesons π0π0, η  , and ηη, can be well understood in the framework of vector meson dominance (VMD) in association with the ηc–η(η)ηcη(η) mixings due to the axial gluonic anomaly. These two mechanisms behave differently in J/ψJ/ψ and ψ→γPψγP. A coherent understanding of the branching ratio patterns observed in J/ψ(ψ)→γPJ/ψ(ψ)γP can be achieved by self-consistently including those transition mechanisms at hadronic level. The branching ratios for ψ(3770)→γPψ(3770)γP are predicted to be rather small.  相似文献   

13.
The deviation δQWδQW of the weak charge from its standard model prediction due to the mixing of the W boson with the charged bilepton Y as well as of the Z   boson with the neutral ZZ and the real part of the non-Hermitian neutral bilepton X   in the economical 3–3–1 model is established. Additional contributions to the usual δQWδQW expression in the extra U(1)U(1) models and the left–right models are obtained. Our calculations are quite different from previous analyzes in this kind of the 3–3–1 models and give the limit on mass of the ZZ boson, the Z–ZZZ and W–YWY mixing angles with the more appropriate values: MZ>564 GeVMZ>564 GeV, −0.018<sinφ<00.018<sinφ<0 and |sinθ|<0.043|sinθ|<0.043.  相似文献   

14.
The large-n expansion is applied to the calculation of thermal critical exponents describing the critical behavior of spatially anisotropic d-dimensional systems at m  -axial Lifshitz points. We derive the leading non-trivial 1/n1/n correction for the perpendicular correlation-length exponent νL2νL2 and hence several related thermal exponents to order O(1/n)O(1/n). The results are consistent with known large-n expansions for d  -dimensional critical points and isotropic Lifshitz points, as well as with the second-order epsilon expansion about the upper critical dimension d?=4+m/2d?=4+m/2 for generic m∈[0,d]m[0,d]. Analytical results are given for the special case d=4d=4, m=1m=1. For uniaxial Lifshitz points in three dimensions, 1/n1/n coefficients are calculated numerically. The estimates of critical exponents at d=3d=3, m=1m=1 and n=3n=3 are discussed.  相似文献   

15.
In this note, we propose a new model of agegraphic dark energy based on the Károlyházy relation, where the time scale is chosen to be the conformal time η   of the Friedmann–Robertson–Walker (FRW) universe. We find that in the radiation-dominated epoch, the equation-of-state parameter of the new agegraphic dark energy wq=−1/3wq=1/3 whereas Ωq=n2a2Ωq=n2a2; in the matter-dominated epoch, wq=−2/3wq=2/3 whereas Ωq=n2a2/4Ωq=n2a2/4; eventually, the new agegraphic dark energy dominates; in the late time wq→−1wq1 when a→∞a, and the new agegraphic dark energy mimics a cosmological constant. In every stage, all things are consistent. The confusion in the original agegraphic dark energy model proposed in [R.G. Cai, Phys. Lett. B 657 (2007) 228, arXiv: 0707.4049 [hep-th]] disappears in this new model. Furthermore, Ωq?1Ωq?1 is naturally satisfied in both radiation-dominated and matter-dominated epochs where a?1a?1. In addition, we further extend the new agegraphic dark energy model by including the interaction between the new agegraphic dark energy and background matter. In this case, we find that wqwq can cross the phantom divide.  相似文献   

16.
Kinematical models are constrained by the latest observational data from geometry-distance measurements, which include 557 type Ia supernovae (SNIa) Union2 data and 15 observational Hubble data. Considering two parameterized deceleration parameter, the values of current deceleration parameter q0q0, jerk parameter j0j0 and transition redshift zTzT, are obtained. Furthermore, we show the departures for two parameterized kinematical models from ΛCDM model according to the evolutions of jerk parameter j(z)j(z). Also, it is shown that the constraint on jerk parameter j(z)j(z) is weak by the current geometrical observed data.  相似文献   

17.
We report changes in mean-square charge radii, δ〈r2δr2, magnetic moments and quadrupole moments for three multi-quasi particle isomers; 97m2Y, 176mYb and 178m1Hf. All the isomers are observed to display a decrease in 〈r2r2 compared to the lower-lying nuclear state on which the isomer is built. The decreases in 〈r2r2 occur despite the isomers showing increases in quadrupole moment. Possible mechanisms for the effect, which is now seen for six multi-quasi particle isomers, are discussed.  相似文献   

18.
In this Letter we show numerical existence of O(4)O(4) Dirac–Born–Infeld (DBI) Textures living in (N+1)(N+1) dimensional spacetime. These defects are characterized by SN→S3SNS3 mapping, generalizing the well-known Hopf fibration into πN(S3)πN(S3), for all N>3N>3. The nonlinear nature of DBI kinetic term provides stability against size perturbation and thus renders the defects having natural scale.  相似文献   

19.
20.
We construct a little Higgs model with the most minimal extension of the standard model gauge group by an extra U(1)U(1) gauge symmetry. For specific charge assignments of scalars, an approximate U(3)U(3) global symmetry appears in the cutoff-squared scalar mass terms generated from gauge bosons at one-loop level. Hence, the Higgs boson, identified as a pseudo-Goldstone boson of the broken global symmetry, has its mass radiatively protected up to scales of 5–10 TeV. In this model, a Z2Z2 symmetry, ensuring the two U(1)U(1) gauge groups to be identical, also makes the extra massive neutral gauge boson stable and a viable dark matter candidate with a promising prospect of direct detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号