首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this review is to highlight the versatility of membrane introduction mass spectrometry (MIMS) in environmental applications, summarize the measurements of environmental volatile organic compounds (VOCs) accomplished using MIMS, present developments in the detection of semi-volatile organic compounds (SVOCs) and forecast possible future directions of MIMS in environmental applications.  相似文献   

2.
PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3–9. They were all negative in pure water and 1 g·L−1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L−1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.  相似文献   

3.
Solid phase microextraction (SPME) of chlorophenols [2-chlorophenol (2CP), 2,4-dichlorophenol (24CP), 4-chloro-3-methylphenol (43CP), 2,4,6-tri-chlorophenol (246CP) and pentachlorophenol (PCP)] followed by direct mass spectrometric analysis has been performed by fiber introduction mass spectrometry (FIMS). Two SPME fibers (65 μm PDMS/DVB and 85 μm PA fibers) were tested, and FIMS was performed via selective ion monitoring (SIM). The extractions were evaluated at 10% ionic strength and pH 1. Best extraction times were determined for both fibers. Limits of detection (LOD) and limits of quantification (LOQ) for both fibers were in the low μg L−1 range. Coefficients of correlation for the analytical curves showed linear responses and mineral water and river water samples spiked with 50 μg L−1 presented high recoveries. FIMS, as compared to current EPA methods, is demonstrated to allow faster and simpler (elimination of pre-separation or derivatization steps) analysis of chlorophenols in water with the required sensitivity.  相似文献   

4.
A superhydrophobic polystyrene hollow fiber was electrospun around a copper spring collector. This approach led to the construction of a hollow fiber membrane, and the copper spring acted as a scaffold. The characteristic properties of the hollow fiber were studied by scanning electron microscopy. The membrane was used as a probe to transfer the extracting solvent from aquatic media to a gas chromatograph. After performing the liquid–liquid microextraction procedure on 10 mL of water sample by octanol, the whole solution was passed through the prepared polystyrene hollow fiber. Propanol, containing 2 mg/L lindane as the internal standard, was used for desorption and an aliquot of 2 μL of the desorbing solvent was subsequently injected into gas chromatography with mass spectrometry. Effects of different parameters influencing the extraction efficiency were optimized. The limits of detection and quantification were 2 and 6 ng/L, respectively. The relative standard deviations at a concentration level of 100 ng/L were between 2 and 6% (n = 3) while the method linearity ranged from 6 to 200 ng/L. Some real water samples were analyzed by the developed method and relative recoveries were in the range of 76–107%.  相似文献   

5.
Fouling is the most critical problem associated with membrane separations in liquid media. But it is difficult to control the inevitable membrane fouling because of its invisibility, especially on the inside surface of hollow fiber membranes. This study describes the extension of ultrasonic time-domain reflectometry (UTDR) for the real-time measurement of particle deposition in a single hollow fiber membrane. A transducer with a frequency of 10 MHz and polyethersulfone hollow fiber membranes with 0.8 mm inside diameter (ID) and 1.2 mm outside diameter (OD) were used in this study. The fouling experiments were carried out with 1.8 g/L kaolin suspension at flow rates 16.7 and 10.0 cm/s. The results show that UTDR technique is able to distinguish and recognize the acoustic response signals generated from the interfaces water/upper outside surface of the hollow fiber, lumen upside surface/water, water/lumen underside surface and lower outside surface/water in the single hollow fiber membrane module in pure water phase. The systemic changes of acoustic responses from the inside surfaces of the hollow fiber in the time- and amplitude-domain with operation time during the fouling experiments were detected by UTDR. It is associated with the deposition and formation of the kaolin layer on the inside surfaces. Further, the acoustic measurement indicates that the deposited fouling layer is denser on the lumen underside surface of the hollow fiber than that on the lumen upside surface as a result of weight. Moreover, it is found that the fouling layer grows faster on the inside surface of the hollow fiber at a flow rate of 10.0 cm/s than that at 16.7 cm/s due to the lower shear stress. The fouling layer formed is thicker at a flow rate of 10.0 cm/s than that at 16.7 cm/s. The flux decline data and SEM analysis corroborate the ultrasonic measurement. Overall, this study confirms that UTDR measurement will provide not only a new protocol for the observation of hollow fiber membrane fouling and cleaning, but also a quantitative approach to the optimization of the membrane bioreactor system.  相似文献   

6.
A new experimental method to obtain internal pressure profiles in a hollow fiber membrane was demonstrated. The experimentally obtained internal pressure profiles were compared with the theoretically calculated ones based on Hagen–Poiseuille equations. The experimental and theoretical results agreed very well in clean water conditions only when accurate membrane permeabilities and effective internal diameters were available. New experimental methods to obtain the two parameters were demonstrated. The same experimental technique was also applied for the submerged hollow fiber membranes filtering activated sludge to find out how internal pressure profiles were changing with time. Based on the pressure profiles, evidences that indicated the local flux near membrane exit was lower than those in adjacent area were found. This observation contradicted to the filtration models based on critical flux concept. It was considered that the cake layer collapse near the membrane exit was the cause. Though there was some degree of delay in pressures detection, the method demonstrated in this study provided a great accuracy when pressure profiles did not change rapidly.  相似文献   

7.
An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption.  相似文献   

8.
This document is a glossary of terms for separations coupled to mass spectrometry. It covers gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry, and supercritical fluid chromatography/mass spectrometry and the sample introduction, ionization, and data analysis methods used with these combined techniques.  相似文献   

9.
Transport of sulfuric acid through anion-exchange membrane NEOSEPTA-AFN   总被引:1,自引:0,他引:1  
This paper deals with the determination of the membrane mass transfer coefficient for sulfuric acid in an anion-exchange membrane NEOSEPTA-AFN. This quantity has been determined on the basis of experiments carried out in a batch dialysis cell using the method of numerical integration of the basic differential equation describing the time dependence of sulfuric acid concentration and subsequent optimization procedure. The experiments carried out made it possible to calculate the membrane mass transfer coefficient for sulfuric acid over the concentration range from 0.1 to 1.9 kmol m−3 in the external solution.  相似文献   

10.
Characterization of membrane proteins remains an analytical challenge because of difficulties associated with tedious isolation and purification. This study presents the utility of the polyvinylidene difluoride (PVDF) membrane for direct sub-proteome profiling and membrane protein characterization by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The hydrophobic adsorption of protein, particularly membrane proteins, on the PVDF surface enables efficient on-PVDF washing to remove high concentrations of detergents and salts, such as up to 5% sodium dodecyl sulfate (SDS). The enhanced spectrum quality for MALDI detection is particularly notable for high molecular weight proteins. By using on-PVDF washing prior to MALDI detection, we obtained protein profiles of the detergent-containing and detergent-insoluble membrane fractions from Methylococcus capsulatus (Bath). Similar improvements of signal-to-noise ratios were shown on the MALDI spectra for proteins electroblotted from SDS-polyacrylamide gel electrophoresis (SDS-PAGE) onto the PVDF membrane. We have applied this strategy to obtain intact molecular weights of the particulate methane monooxygenase (pMMO) composed of three intrinsic membrane-bound proteins, PmoA, PmoB, and PmoC. Together with peptide sequencing by tandem mass spectrometry, post-translational modifications including N-terminal acetylation of PmoA and PmoC and alternative C-terminal truncation of PmoB were identified. The above results show that PVDF-aided MALDI-MS can be an effective approach for profiling and characterization of membrane proteins.  相似文献   

11.
In this work,a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water.Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time.Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfact...  相似文献   

12.
A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L− 1) and a relative standard deviation (2.5% at 50 ng L− 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4–264.8 ng L− 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.  相似文献   

13.
Real-time analysis of gases for volatile organic compounds or elements is required for a number of applications. Direct sampling-mass spectrometry (DS-MS) is one approach to solve these analytical problems. This article reviews various instrumental configurations and applications of DS-MS. Inlet systems employed for DS-MS include membranes, microtrap interfaces, atmospheric sampling glow discharge ionization, atmospheric pressure ionization, microwave plasma ionization, and capillary restrictors. The use of laser-based ionization methods for DS-MS is described, including resonance-enhanced multiphoton ionization and single photon ionization.  相似文献   

14.
Polyvinylidenefluoride (PVDF) hollow fiber membranes were fabricated by wet spinning (wet/wet) and dry‐jet wet spinning (dry/wet; 3 cm air gap) processes with four types of polyvinylpyrrolidone (PVP) of different molecular weight as additives. Evolution of the precipitation kinetics, morphologies, permeation performances, and crystallization behaviors of the as‐spun PVDF membranes were investigated. The PVDF membranes were well characterized by numerous state‐of‐the‐art analytical techniques: scanning electron microscopy (SEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and attenuated total reflectance fourier Transform Infrared (FTIR‐ATR) and elucidated accompanying with its precipitation kinetics obtained by light transmittance measurements. The precipitation kinetics results confirm that four PVDF/PVP/NMP dopes experience instantaneous demixing mechanism and the precipitation rate decreases as PVP molecular weight increases. Little peaks are found in the precipitation curves of the PVDF dopes containing PVP of low molecular weight. The SEM images indicate that the middle sponge‐like layer sandwiched by double finger‐like layers becomes thinner for the special precipitation behaviors. Visible large pores exist in the internal surfaces of the PVDF membranes spun by both wet/wet and dry/wet spinning processes. The increase in PVP molecular weight restricts the formation of large pores in the internal surfaces of the PVDF membranes for the increase in dope viscosity. The pure water permeability (PWP) of the as‐spun PVDF membranes increases initially and then decreases as PVP molecular weight increases. The largest PWP flux of 316.7 L m?2 h?1 bar?1 is obtained for the PVDF membrane containing PVP K25 by wet/wet spinning process. The rejections for bovine serum albumin (BSA) by the as‐spun PVDF membranes range from 35.4 to 82.9%. It illustrates that typical PVDF ultrafiltration membranes were obtained in this research. The melting temperature(Tm) of the PVDF hollow fiber membranes decreases with the increase in the PVP molecular weight as a whole. IR spectra and XRD patterns verify the exclusive formation of β crystalline phase structure in the as‐spun PVDF membranes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The membrane extraction of copper ions was carried out using hydrophobic poly(propylene) (PP) hollow fiber membrane modules and kerosene solutions containing organic extractant. The influences of different extractant on the extraction yield, mass transfer performance and mass transfer mechanism were studied. Compared with 2‐ethylhexyl phosphoric acid (2EHPA) and 2‐methyl‐5‐sulpho benzaldoxime (2M5SB), di‐(2‐ethylhexyl)phosphoric acid (D2EHPA) extractant system with high distribution coefficient exhibited higher extraction yield of 99.7%. The extraction equilibrium time, the final extraction yield and the total mass transfer coefficient were independent of the flow rates of two phases. The extraction equilibrium time and the final extraction yield at different flow rates of two phases were 80 min and near 99.5%, respectively. A mass transfer model of a complexation reaction describing the overall mass transfer resistance was controlled by interfacial reactions rather than the aqueous and organic boundary layer which could explain the effect of flow rate on the final extraction yield and the total mass transfer coefficient. This model showed that the mass transfer resistance and mass transfer coefficient were independent of Cu2+ when copper ion concentration was more than 0.06 g/L. However, when copper concentration was less than 0.06 g/l, the mass transfer resistance increased as Cu2+ concentration decreased, and the mass transfer coefficient decreased as Cu2+ concentration decreased. Extractant entrainment in the aqueous phase and membrane fouling were investigated primarily. It was found that the solvent entrainment could reduce to 10 ppm much lower than 200 ppm of the classic liquid–liquid extraction, and that the cleaning of contaminated membranes was not complete. However, it can be still concluded from this research that the membrane extraction in PP hollow fibre with D2EHPA extractant would be an effective and promising processing means for Cu2+ separation from aqueous solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
采用中空纤维液相微萃取与高效液相色谱联用技术测定了尿液样品中的痕量己烯雌酚;考察了样品相酸度、中间相种类、接收相浓度、搅拌速度、萃取时间等对液-液-液三相微萃取效率的影响,进而确定了最佳萃取条件.结果表明,当样品相pH为2.5,中间相为甲苯,接收相为3μL 0.25mol/L氢氧化钠溶液,搅拌速度为800r/min,萃取时间为50min时,萃取效率最佳.在最佳萃取条件下,样品的回收率为76.4%,相对标准偏差为3.8%.  相似文献   

17.
A new polyvinylidene difluoride (PVDF) hollow fiber (200 μm wall thickness, 1.2 mm internal diameter, 0.2 μm pore size) was compared with two other polypropylene (PP) hollow fibers (200, 300 μm wall thickness, 1.2 mm internal diameter, 0.2 μm pore size) in the automated hollow fiber liquid-phase microextraction (HF-LPME) of flunitrazepam (FLNZ) in biological samples. With higher porosity and better solvent compatibility, the PVDF hollow fiber showed advantages with faster extraction efficiency and operational accuracy. Parameters of the CTC autosampler program for HF-LPME in plasma and urine samples were carefully investigated to ensure accuracy and reproducibility. Several parameters influencing the efficiency of HF-LPME of FLNZ in plasma and urine samples were optimized, including type of porous hollow fiber, organic solvent, agitation rate, extraction time, salt concentration, organic modifier, and pH. Under optimal conditions, extraction recoveries of FLNZ in plasma and urine samples were 6.5% and 83.5%, respectively, corresponding to the enrichment factor of 13 in plasma matrix and 167 in urine matrix. Excellent sample clean-up was observed and good linearities (r2 = 0.9979 for plasma sample and 0.9995 for urine sample) were obtained in the range of 0.1–1000 ng/mL (plasma sample) and 0.01–1000 ng/mL (urine sample). The limits of detection (S/N = 3) were 0.025 ng/mL in plasma matrix and 0.001 ng/mL in urine matrix by gas chromatography/mass spectrometry/mass spectrometry.  相似文献   

18.
Whereas the structure of the flow field generated in the hollow fiber membrane modules operating as liquid–liquid or gas–liquid contactors has been studied extensively theoretically, this is not the case for the much more complex flow field generated during the filtration operation of the same type of modules. The present work is a first approach to analyze and understand the particular flow field. The mathematical problem is formulated and then geometrical and physical simplifications are introduced in order to decompose the full problem in a series of simpler sub-problems. In addition to the presentation of the general structure and the features of the problem, the focus of the present work is to derive all possible analytical solutions of the sub-problems. Several results based on analytical or simple numerical approaches are also presented.  相似文献   

19.
Membrane inlet mass spectrometry (MIMS) is useful for on-line monitoring of fermentation processes. However, readings are affected by the complex and dynamic matrix in which biological processes occur, making MIMS calibration a challenge. In this work, two calibration strategies were evaluated for measurement of typical products of acidogenic fermentation, i.e., ethanol, H2, and CO2 in the liquid phase, and H2 and CO2 in the gas phase: (1) “standard calibration”, which was performed independent of fermentation experiments with sterile standards in water with a N2 headspace, and (2) “in-process calibration” whereby fermentation was monitored concurrent with off-line analysis. Fermentation was operated in batch and continuous modes. In-process calibration was shown to be most effective for measurements of H2 and CO2 in both gas and liquid phases; standard calibration gave erroneous results. In the gas phase, this was due to a lower sensitivity during experiments compared to the independent standard calibration, believed to be caused by formation of a liquid film on the surface of the probe. In the liquid phase, moving from the standard calibration environment to the fermentation caused the linear relationship between the H2 concentration and MIMS signal to change in intercept, and the relationship for CO2 to change in slope, possibly due to dissolved ions, and related non-ideality. For ethanol, standard calibration results were fairly consistent with in-process calibration results. The main limitation with in-process calibration is the potential for a lack of variability in target concentration. This could be addressed by spiking the targeted compound at the end of the experiment. Regardless, MIMS is an ideal instrument for analysing fermentation experiments, due to its ability to measure targeted compounds semi-continuously, and due to a lack of drift over long periods.  相似文献   

20.
Two gas chromatographic methods, GC-FID (flame ionization detection) and GC-ELCD (electrolytic conductivity detector) are compared in tlie analysis of volatile organic sulfur compounds (VOSCs) in water samples with a membrane inlet mass spectrometry (MIMS) technique. Carbon disulfide, ethanethiol, dimethyl sulfide, ethyl-methyl sulfide, thiophene, and dimethyl disulfide were used as test compounds. Linear dynamic ranges were found to be two decades with the GC-ELCD method and four decades with the GC-FID and MIMS methods. Detection limits were at low (μg/1 levels with the two gas chromatographic methods and clearly below μg/1 level with the MIMS method. Analysis of one sample takes 40 min with the gas chromatographic methods and five minutes with the MIMS method. The selectivity was good, especially with the GC-ELCD and the MIMS method. In addition, quantitative results obtained with spiked water samples by the three methods are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号