首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Violation of unitarity for noncommutative field theory on compact space-times is considered. Although such theories are free of ultraviolet divergences they still violate unitarity, while in a usual field theory such a violation occurs when the theory is nonrenormalizable. The compactness of space-like coordinates implies discreteness of the time variable which leads to the appearance of unphysical modes and violation of unitarity even in the absence of a star-product in the interaction terms. Thus, this conclusion holds also for other quantum field theories with discrete time. Violation of causality, among others, occurs also in the case of the nonvanishing of the commutation relations between observables at space-like distances with a typical scale of noncommutativity. While this feature allows for a possible violation of the spin-statistics theorem, such a violation does not rescue the situation but makes causality violation scale as the inverse of the mass appearing in the considered model, i.e., it becomes even more severe. We also stress the role of smearing over the noncommutative coordinates entering the field operator symbols. Received: 19 March 2001 / Published online: 29 June 2001  相似文献   

2.
《Physics letters. A》2014,378(30-31):1973-1979
We present a relationship between noncommutativity and higher order time derivative theories using a perturbation method. We make a generalization of the Chern–Simons quantum mechanics for higher order time derivatives. This model presents noncommutativity in a natural way when we project to low-energy physical states without the necessity of taking the strong field limit. We quantize the theory using a Bopp's shift of the noncommutative variables and we obtain a spectrum without negative energies, under the perturbation limits. In addition, we extent the model to high order time derivatives and noncommutativity with variable dependent parameter.  相似文献   

3.
Haag’s theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.  相似文献   

4.
The causal approach to perturbative quantum field theory is presented in detail, which goes back to a seminal work by Henri Epstein and Vladimir Jurko Glaser in 1973 [12]. Causal perturbation theory is a mathematically rigorous approach to renormalization theory, which makes it possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical basis. Epstein and Glaser solved this problem for a special class of distributions, the time-ordered products, that fulfill a causality condition, which itself is a basic requirement in axiomatic quantum field theory. In their original work, Epstein and Glaser studied only theories involving scalar particles. In this review, the extension of the method to theories with higher spin, including gravity, is presented. Furthermore, specific examples are presented in order to highlight the technical differences between the causal method and other regularization methods, like, e.g. dimensional regularization.  相似文献   

5.
The rigorous definition of quantum field operator is done in any theory where usual product between corresponding test functions is substituted by the star product. The important example of such a theory is noncommutative quantum field theory. Cluster properties of Wightman functions are proved in these theories.  相似文献   

6.
We construct a new gauge theory on a pair of d-dimensional noncommutative tori. The latter comes from an intimate relationship between the noncommutative geometry associated with a lattice vertex operator algebra ? and the noncommutative torus. We show that the tachyon algebra of ? is naturally isomorphic to a class of twisted modules representing quantum deformations of the algebra of functions on the torus. We construct the corresponding real spectral triples and determine their Morita equivalence classes using string duality arguments. These constructions yield simple proofs of the O(d,d;ℤ) Morita equivalences between d-dimensional noncommutative tori and give a natural physical interpretation of them in terms of the target space duality group of toroidally compactified string theory. We classify the automorphisms of the twisted modules and construct the most general gauge theory which is invariant under the automorphism group. We compute bosonic and fermionic actions associated with these gauge theories and show that they are explicitly duality-symmetric. The duality-invariant gauge theory is manifestly covariant but contains highly non-local interactions. We show that it also admits a new sort of particle-antiparticle duality which enables the construction of instanton field configurations in any dimension. The duality non-symmetric on-shell projection of the field theory is shown to coincide with the standard non-abelian Yang–Mills gauge theory minimally coupled to massive Dirac fermion fields. Received: 26 October 1998/ Accepted: 9 April 1999  相似文献   

7.
We discuss the Euclidean noncommutative f44{\phi^4_4}-quantum field theory as an example of a renormalizable field theory. Using a Ward identity, Disertori, Gurau, Magnen and Rivasseau were able to prove the vanishing of the beta function for the coupling constant to all orders in perturbation theory. We extend this work and obtain from the Schwinger–Dyson equation a non-linear integral equation for the renormalised two-point function alone. The non-trivial renormalised four-point function fulfils a linear integral equation with the inhomogeneity determined by the two-point function. These integral equations might be the starting point of a nonperturbative construction of a Euclidean quantum field theory on a noncommutative space. We expect to learn about renormalisation from this almost solvable model.  相似文献   

8.
From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein-Gordon equation and Dirac equation. We investigate the scalar field and φ4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.  相似文献   

9.
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them θ-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing θ-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract θ-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein–Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as θ-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein–Gordon and Dirac equations in the noncommutative field theories. The θ-modified action of the relativistic spinning particle is just a generalization of the Berezin–Marinov pseudoclassical action for the noncommutative case.  相似文献   

10.
A pedagogical introduction to some of the main ideas and results of field theories on quantized spacetimes is presented, with emphasis on what such field theories may teach us about the problem of quantizing gravity. We examine to what extent noncommutative gauge theories may be regarded as gauge theories of gravity. UV/IR mixing is explained in detail and we describe its relations to renormalization, to gravitational dynamics, and to deformed dispersion relations in models of quantum spacetime of interest in string theory and in doubly special relativity. We also discuss some potential experimental probes of spacetime noncommutativity.  相似文献   

11.
Quantum electrodynamics on noncommutative spacetime   总被引:1,自引:0,他引:1  
We propose a new method to quantize gauge theories formulated on a canonical noncommutative spacetime with fields and gauge transformations taken in the enveloping algebra. We show that the theory is renormalizable at one loop and compute the beta function and show that the spin dependent contribution to the anomalous magnetic moment of the fermion at one loop has the same value as in the commutative quantum electrodynamics case.  相似文献   

12.
We propose to deploy limits that arise from different tests of the Pauli Exclusion Principle: i) to provide theories of quantum gravity with experimental guidance; ii) to distinguish, among the plethora of possible models, the ones that are already ruled out by current data; iii) to direct future attempts to be in accordance with experimental constraints. We first review experimental bounds on nuclear processes forbidden by the Pauli Exclusion Principle,which have been derived by several experimental collaborations making use of various detector materials. Distinct features of the experimental devices entail sensitivities on the constraints hitherto achieved that may differ from one another by several orders of magnitude. We show that with choices of these limits, well-known examples of flat noncommutative space-time instantiations of quantum gravity can be heavily constrained, and eventually ruled out.We devote particular attention to the analysis of the κ-Minkowski and θ-Minkowski noncommutative spacetimes.These are deeply connected to some scenarios in string theory, loop quantum gravity, and noncommutative geometry.We emphasize that the severe constraints on these quantum spacetimes, although they cannot rule out theories of top-down quantum gravity to which they are connected in various ways, provide a powerful limitation for those models. Focus on this will be necessary in the future.  相似文献   

13.
We derive noncommutative multiparticle quantum mechanics from noncommutative quantum field theory in the nonrelativistic limit. Particles of opposite charges are found to have opposite noncommutativity. As a result, there is no noncommutative correction to the hydrogen atom spectrum at the tree level. We also comment on the obstacles to take noncommutative phenomenology seriously and propose a way to construct noncommutative SU(5) grand unified theory.  相似文献   

14.
We present a nonperturbative lattice formulation of noncommutative Yang–Mills theories in arbitrary even dimension. We show that lattice regularization of a noncommutative field theory requires finite lattice volume which automatically provides both an ultraviolet and an infrared cutoff. We demonstrate explicitly Morita equivalence of commutative U(p) gauge theory with p·nf flavours of fundamental matter fields on a lattice of size L with twisted boundary conditions and noncommutative U(1) gauge theory with nf species of matter on a lattice of size p·L with single-valued fields. We discuss the relation with twisted large N reduced models and construct observables in noncommutative gauge theory with matter.  相似文献   

15.
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.  相似文献   

16.
The Jauch-Piron property of states on a quantum logic is seen to be of considerable importance within the foundation of quantum theories. In this survey we summarize and comment on recent results on the Jauch-Piron property. We also pose a few open problems whose solution may help in further developing quantum theories and noncommutative measure theory.  相似文献   

17.
Some discrete two-dimensional many particle systems are investigated inside the context of a deformed Newtonian mechanics obtained as a classical limit of a noncommutative quantum mechanics where the noncommutativity includes all degrees of freedom of the theory. Also, applying the continuous limit some alternative noncommutative generalizations of two-dimensional field theories have been constructed.  相似文献   

18.
We give strong evidence that the linear sigma model at small external momenta is an effective theory for the leading logarithms of chiral perturbation theory. Based on this evidence an attempt is made to sum the leading logarithms of chiral perturbation theory to all orders. We illustrate why this summation nonetheless fails when one uses standard renormalization group techniques of renormalizable quantum field theories.  相似文献   

19.
《Nuclear Physics B》2005,715(3):695-712
We study quantisation of noncommutative gravity theories in two dimensions (with noncommutativity defined by the Moyal star product). We show that in the case of noncommutative Jackiw–Teitelboim gravity the path integral over gravitational degrees of freedom can be performed exactly even in the presence of a matter field. In the matter sector, we study possible choices of the operators describing quantum fluctuations and define their basic properties (e.g., the Lichnerowicz formula). Then we evaluate two leading terms in the heat kernel expansion, calculate the conformal anomaly and the Polyakov action (as an expansion in the conformal field).  相似文献   

20.
In the framework of noncommutative quantum field theories (NC QFT), we show the general validity of the CPT and spin-statistics theorems, with the exception of some peculiar situations in the latter case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号