首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
A Polysulfone-Polyethylene glycol (PS/PEG) flat sheet membrane was prepared by phase inversion technique. Dimethyl Formamide (DMF) was utilized as a solvent and deionized water was utilized as the coagulant. Polyethylene glycol (PEG) of a various dose of PEG 2000 was utilized as the polymeric improvers and as a pore-forming agent in the casting mixture. The single-walled carbon nanotube (SWCNTs), multi-walled carbon nanotube (MWCNTs), aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles (NPs) were utilized to improve the PS/PEG membrane performances. The characterizations of the neat PS, PS/PEG, PS/PEG/Al2O3 (M1) PS-PEG/CuO (M2), PS-PEG/SWCNTs (M3) and PS/PEG/MWCNTs (M14) nanocomposite (NC) modified membranes were acquired via Fourier-transform infrared analysis (FTIR), water contact angle estimation (WCA), scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TGA). Enhanced Direct contact membrane distillation (EDCMD) unit was used for estimating the efficiency of the performance of the synthesized NC membranes via 60 °C feed synthetic water and/or saline oil field produced water samples containing salinities 123,14 mg/L. Adjusting the operational procedures and water characteristics confirmed a high salt rejection of 99.99% by the synthesized NC membranes. The maximum permeate flux achieved in the order of SWCNTs (20.91) > Al2O3 (19.92) > CuO (18.92) > MWCNT (18.20) (L/m2.h) with adjusted concentration of 0.5, 0.75, 0.75, 0.1 wt% compared with PS weight, i.e. 16%. The optimum operational circumstances comprised feed and permeate temperatures 60 °C and 20 °C, respectively. The achieved flux was 5.97 L/m2.h, using brine oil field produced water, via PS/PEG/SWCNTs membrane with 0.5 wt% of SWCNTs. Moreover, the membrane indicated sustaining performance stability in the 480 min continuous desalination testing, showing that the synthesized PS/PEG/SWCNTs NC modified membrane may be of magnificent potential to be activated in EDCMD procedure for water desalination.  相似文献   

2.
A two-dimensional mathematical model was theoretically developed to predict the temperature polarization profile of direct contact membrane distillation (DCMD) processes. A concurrent flat-plate device was designed to verify the theoretical prediction of pure water productivity on saline water desalination. The numerical results from the temperature polarization profile were obtained using the finite difference technique to reduce the two-dimensional partial differential equations into an ordinary differential equations system. The resultant simultaneous linear equations system was solved with the fourth-order Runge-Kutta method. The results show theoretical prediction agreement with the measured values from the experimental runs. A combination of the Knudsen flow and Poiseuille flow models in the present mathematical formulation for membrane coefficient estimation was used to establish theoretical agreement. The influence of the inlet saline water temperature and volumetric flow rate on the pure water productivity as well as the hydraulic dissipated energy are also delineated.  相似文献   

3.
A thermal stable composite membrane was prepared by interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on poly(phthalazinone ether amide) (PPEA) ultrafiltration membrane. The effect of reaction parameters on the performance of composite membranes was studied and optimized. The surface morphologies of the composite membrane and the substrate were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The rejection of optimized composite membrane for dyes Congo red (CGR) and Acid chrome blue K (ACBK), the molecular weight (MW) of which is over 400, was over 99.2%, with a flux at about 180 L m−2 h−1. While the rejection for NaCl was only 18.2% with a flux over 270 L m−2 h−1, when tested at 1.0 MPa 60 °C. The composite membrane was applied in the desalination-purification experiment of dye ACBK and NaCl mixed solution. The flux of the membrane increased obviously as the operation pressure and/or temperature increased, while the rejection for dye was constant and kept over 99.3%. The purification experiments were accomplished effectively at 1.0 MPa, 80 °C. Only after five rounds of desalination-concentration experiment, about 160 min, the salt mixed in dye solution was fully removed. The initial flux of the eighth cycle was about 254 L m−2 h−1, which was only 20 L m−2 h−1 lower than that of the first round. The rejection of the membrane was constant and kept over 99.3% through out the eight cycles of purification experiment.  相似文献   

4.
Microbial treatments of waste water can be done in membrane reactors. A membrane installed outside the reactor is used to separate bacteria from the treated effluent.

A new membrane reactor concept is presented. The separation membrane is introduced in the reactor and not outside as in a normal one. The membrane plays the role of a separator of two streams and is used at the same time as the immobilizing support for the bacteria.

The reactor keeps the bacteria active via a specific nutrient stream that is provided on one side of the membrane. The bacteria grow in and on the membrane where they form an active biofilm. The bacteria can treat the effluent on one side and can be kept active via the nutrient stream at the other side without contamination of the effluent by the nutrient.

In this work, the performance of the BICMER (Bacteria Immobilized Composite MEmbrane Reactor) is demonstrated via treatments of effluents containing heavy metals or organic xenobiotics.

For heavy metal removal Alcaligenes eutrophus CH34 bacteria were used. These bacteria induce a metal bioprecipitation process that results in the formation of crystalline metal carbonates, which are recovered on a separate column in the reactor. In this way metals can be recovered without disturbing the biofilm on the membrane. Metals such as Cd, Zn, Cu, Pb and Y can be reduced to less than 50 ppb. The metals Co, Ni, Pd and Ge are reduced to below 100 ppb.

For organic xenobiotics Alcaligenes eutrophus AE1308 bacteria or other strains (depending on the xenobiotic to be degraded) were used. This strain degrades the xenobiotic 3-chlorobenzoate (Cba) and 2,4-dichlorophenoxyacetic acid to CO2, H2O and chloride). Concentrations of 3 mM Cba could be reduced to less than 0.1 mM. For other toxic organic compounds, different biodegrading strains need to be used.  相似文献   


5.
The transport properties of a novel porous fluorinated polyimide membrane fabricated by a wet phase inversion process were studied with a stirred dead‐end filtration cell. The porous membrane‐forming solvents were tetrahydrofuran (THF), acetone, N,N‐dimethylacetamide (DMAc), N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), and dimethylsulfoxide (DMSO). The phase separation phenomena in a ternary system of polyimide/solvent/water were investigated from cloud point curves by a titration method and binary interaction parameters. Solvent–water demixing in the system has been found to play very important roles in determining the structure and surface morphology of the polyimide membrane. The porous fluorinated polyimide membranes showed pore sizes from 4 to 500 nm and permeation properties from ultrafiltration to a microfiltration range. In this study, we particularly focused on fouling of the polyimide membranes, because fouling decreases the flux and increases the resistance. Interestingly, the porous polyimide membrane showed excellent water flux recovery after water cleaning compared with that of the polyethersulfone (PSf) membrane, which suggest that for a 6FDA‐6FAP membrane, the protein–membrane and protein–protein interaction was not so strong compared with those in a PSf membrane. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this study was to investigate the feasibility of high throughput (HT) screening techniques for pressure-driven membrane processes. For this purpose, a HT-filtration module, allowing to perform 16 pressure-driven separations simultaneously, was designed. The potential of the developed equipment and of the HT-screening concept in general was validated by demonstrating both the reproducibility of experimental flux and selectivity data, and the scalability of these data between the HT-module and a conventional dead-end filtration set-up. Data were obtained with two solvent resistant nanofiltration (SRNF) membranes: a laboratory-prepared polyimide (PI) and a commercial MPF-50 membrane. The reproducibility of the data was highly encouraging, proving that this HT-approach can be a useful tool to rapidly screen a large array of operational parameters in membrane processes and of synthesis parameters in the development of new membranes.  相似文献   

7.
In this paper, the mass transfer coefficients for trichloroethylene (TCE), toluene (TOL) and dimethyl sulfide (DMS) are experimentally determined for different porous and composite membranes. For polypropylene/polyvinylidenedifluoride porous layer/thin film polydimethylsiloxane dense layer composite membranes, membrane mass transfer coefficients are 2.55E−03, 2.82E−03 and 2.90E−03 m/s for TCE, TOL and DMS in N2 at 30.0 ± 0.1 °C, respectively. For polyester/polyacrylonitrile porous layer/thin film polydimethylsiloxane dense layer composite membranes, they are higher, namely 4.28E−03, 4.55E−03 and 4.81E−03 m/s for TCE, TOL and DMS in N2 at 30.0 ± 0.1 °C, respectively. Analysis of the contribution of the dense layer of both composite membranes to the total membrane resistance for mass transfer, showed that this contribution was small for both composite membranes. The higher mass transfer coefficients of the thin film polydimethylsiloxane composite membranes from this study in comparison to others from the literature are primarily due to improvement of the mass transfer characteristics of the porous layer. Analysis of the mass transfer characteristics of the different porous layers of which the total porous layer is composed, showed that the contribution of the porous “backing” layer for mechanical support can be substantial in comparison to the porous layer in contact with the dense layer.  相似文献   

8.
The range of application of a commercial thermodesorption-cryofocussing unit connected to a gas chromatograph/mass selective detector was extended to water analysis by using it in conjunction with membrane extraction. A flow of nitrogen passes through a silicone hollow fiber immersed in the water sample and extracted volatile organic compounds are enriched in a sorption tube mounted on top of the extraction cell. The sorption tube is then placed in the thermodesorption unit and analyzed by GC/MS. The optimal extraction parameters of this combined method were found to be 30 min extraction at 20°C with a stirring speed of 1,250 rpm and a flow rate of 100 mL/min nitrogen using a silicone hollow fiber of 0.3 m length. Under these conditions the reproducibility of the method was 5.2–10.5% RSD. The linear dynamic range of the optimized method spans three orders of magnitude and detection limits were found to be 0.02–0.1 μg/L for cis/trans-1,2-dichloroethene, benzene, trichloroethene, chlorobenzene, bromobenzene, ethylbenzene, 1,1,2,2-tetrachloroethane, and 1,2/1,4-dichlorobenzene. The method was found to be suitable for compounds with boiling points up to 220°C as memory effects increased considerably from dichloro- to hexachlorobenzene. Highly contaminated groundwater samples were analyzed. Quantitative results corresponded well with those achieved with conventional headspace-GC/FID.  相似文献   

9.
A novel boronic acid and carboxyl-modified glucose molecularly imprinted polymer were prepared through suspension polymerization, which is based on 1.0 mmol glucose as a template, 1.2 mmol methacrylamidophenylboronic acid, and 6.8 mmol methacrylic acids as monomers, 19 mmol ethyleneglycol dimethacrylate, and 1 mmol methylene-bis-acrylamide as crosslinkers. The prepared glucose-molecularly imprinted polymer had a particle size of 25–70 μm, and was thermally stable below 215°C, with a specific surface area of 174.82 m2/g and average pore size of 9.48 nm. The best selectivity between glucose and fructose was 2.71 and the maximum adsorption capacity of glucose- molecularly imprinted polymer was up to 236.32 mg/g which was consistent with the Langmuir adsorption model. The similar adsorption abilities in six successive runs and the good desorption rate (99.4%) verified glucose-molecularly imprinted polymer could be reused. It was successfully used for extracting glucose from cellulose hydrolysis. The adsorption amount of glucose was 2.61 mg/mL and selectivity between glucose and xylose reached 4.12. A newly established chromatography (glucose-molecularly imprinted polymer) mediated hollow fiber membrane method in time separated pure glucose from cellulose hydrolysates on a large scale, and purified glucose solution with a concentration of 3.84 mg/mL was obtained, which offered a feasible way for the industrial production of glucose from cellulose hydrolysates.  相似文献   

10.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   

11.
A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4′-(hexafluoroisopropylidene)-diphenol with 2,2′-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5′-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, and N,N-dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30–90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90–130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10−2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273–2286, 2007  相似文献   

12.
Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO3 solution as the stripping solution and membrane solution of 2-ethyl hexyl phosphoric acid-mono-2-ethylhexyl ester(PC-88A) dissolved in kerosene,has been studied for the extraction of Sm3+.Many factors including pH value, volume ratio of membrane solution to stripping solution(OAV) and carrier concentration on Sm3+ extraction were investigated. Experimental results indicate that the optimum extraction conditions of Sm3+ were obtained as that PC-88A concentration was 0.120 mol/L,and OAV was 1.00 in the dispersion phase,and pH value was 4.80 in the feed phase.When initial Sm3+ concentration was 1.20×10-4 mol/L,the extraction percentage of Sm3+ was up to 92.8%in 160 min.  相似文献   

13.
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m−3 range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C4D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s−1), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s−1. A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH3, CH3COOH, HCOOH and, with a derivatization setup, CH2O, by associating the CMDS collection with the determination by CE-C4D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号