首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Brane inflationary universe model in the context of a Chaplygin gas equation of state is studied. General conditions for this model to be realizable are discussed. In the high-energy limit and by using a chaotic potential we describe in great details the characteristic of this model. The parameters of the model are restricted by using recent astronomical observations.  相似文献   

4.
We study brane inflation in a warped deformed conifold background that includes general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi–Yau space. We focus specifically, on the perturbation by chiral operator of dimension 3/2 in the CFT. We find that the effective potential in this case can give rise to required number of e-foldings and the spectral index nSnS consistent with observation. The tensor to scalar ratio of perturbations is generally very low in this scenario. The COBE normalization, however, poses certain difficulties which can be circumvented provided model parameters are properly fine tuned. We find the numerical values of parameters which can give rise to enough inflation, observationally consistent values of density perturbations, scalar to tensor ratio of perturbations and the spectral index nSnS.  相似文献   

5.
In this Letter we investigate acceleration in the flat cosmological model with a conformally coupled phantom field and we show that acceleration is its generic feature. We reduce the dynamics of the model to a 3-dimensional dynamical system and analyze it on a invariant 2-dimensional submanifold. Then the concordance FRW model with the cosmological constant Λ   is a global attractor situated on a 2-dimensional invariant space. We also study the behaviour near this attractor, which can be approximated by the dynamics of the linearized part of the system. We demonstrate that trajectories of the conformally coupled phantom scalar field with a simple quadratic potential crosses the cosmological constant barrier infinitely many times in the phase space. The universal behaviour of the scalar field and its potential is also calculated. We conclude that the phantom scalar field conformally coupled to gravity gives a natural dynamical mechanism of concentration of the equation of state coefficient around the magical value weff=−1weff=1. We demonstrate route to Lambda through the infinite times crossing the weff=−1weff=1 phantom divide.  相似文献   

6.
A model is presented in which a single scalar field is responsible for both primordial inflation at early times and then dark energy at late times. This field is coupled to a second scalar field which becomes unstable and starts to oscillate after primordial inflation, thus driving a reheating phase that can create a high post-inflation temperature. This model easily avoids overproduction of gravity waves, which is a problem in the original quintessential inflation model in which reheating occurs via gravitational particle production.  相似文献   

7.
We show that during cosmological inflation the nonsymmetric metric tensor theory of gravitation develops a spectrum which is potentially observable by cosmic microwave background observations, and may be the most sensitive probe of the scale of cosmic inflation.  相似文献   

8.
An interacting scalar field with largish coupling to curvature can support a distinctive inflationary universe scenario. Previously this has been discussed for the Standard Model Higgs field, treated classically or in a leading log approximation. Here we investigate the quantum theory using renormalization group methods. In this model the running of both the effective Planck mass and the couplings is important. The cosmological predictions are consistent with existing WMAP5 data, with 0.967?ns?0.980.967?ns?0.98 (for Ne=60Ne=60) and negligible gravity waves. We find a relationship between the spectral index and the Higgs mass that is sharply varying for mh∼120–135 GeVmh120135 GeV (depending on the top mass); in the future, that relationship could be tested against data from PLANCK and LHC. We also comment briefly on how similar dynamics might arise in more general settings, and discuss our assumptions from the effective field theory point of view.  相似文献   

9.
We analyse one-loop radiative corrections to the inflationary potential in the theory, where inflation is driven by the Standard Model Higgs field. We show that inflation is possible provided the Higgs mass mHmH lies in the interval mmin<mH<mmaxmmin<mH<mmax, where mmin=[136.7+(mt−171.2)×1.95] GeVmmin=[136.7+(mt171.2)×1.95] GeV, mmax=[184.5+(mt−171.2)×0.5] GeVmmax=[184.5+(mt171.2)×0.5] GeV and mtmt is the mass of the top quark. In the renormalization scheme associated with the Einstein frame the predictions of the spectral index of scalar fluctuations and of the tensor-to-scalar ratio practically do not depend on the Higgs mass within the admitted region and are equal to ns=0.97ns=0.97 and r=0.0034r=0.0034 correspondingly.  相似文献   

10.
We examine the effect of the thermal vacuum on the power spectrum of inflation by using the thermal field dynamics. We find that the thermal effect influences the CMB anisotropy at large length scale. After removing the divergence by using the holographic cutoff, we observe that the thermal vacuum explains well the observational CMB result at low multipoles. This shows that the temperature dependent factor should be considered in the study of power spectrum in inflation, especially at large length scale.  相似文献   

11.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

12.
The fact that the energy densities of dark energy and matter are similar currently, known as the coincidence problem, is one of the main unsolved problems of cosmology. We present here a model in which a spatial curvature of the universe can lead to a transition in the present epoch from a matter dominated universe to a scaling dark energy dominance in a very natural way. In particular, we show that if the exponential potential of the dark energy field depends linearly on the spatial curvature density of a closed universe, the observed values of some cosmological parameters can be obtained assuming acceptable values for the present spatial curvature of the universe, and without fine tuning in the only parameter of the model. We also comment on possible variations of this model, and realistic scenarios in which it could arise.  相似文献   

13.
We study asymptotic dynamics of photons propagating in the polarized vacuum of a locally de Sitter Universe. The origin of the vacuum polarization is fluctuations of a massless, minimally coupled, scalar, which we model by the one-loop vacuum polarization tensor of scalar electrodynamics. We show that late time dynamics of the electric field on superhorizon scales approaches that of an Airy oscillator. The magnetic field amplitude, on the other hand, asymptotically approaches a nonvanishing constant (plus an exponentially small oscillatory component), which is suppressed with respect to the initial (vacuum) amplitude. This implies that the asymptotic photon dynamics is more intricate than that of a massive photon obeying the local Proca equation.  相似文献   

14.
15.
We present a kind of exact inflationary solution in the chaotic inflation scenario to non-minimal coupled scalar field, taking the Hubble parameter directly as a function of the scalar field φ, H(φ) = αφ^n. Using the analysis of the WMAP3 data, we give the range of power index n.  相似文献   

16.
We consider the anisotropic evolution of spatial dimensions and the stabilization of internal dimensions in the framework of brane gas cosmology. We observe that the bulk RR field can give an effective potential which prevents the internal subvolume from collapsing. For a combination of (D−3)(D3)-brane gas wrapping the extra dimensions and 4-form RR flux in the unwrapped dimensions, it is possible that the wrapped subvolume has an oscillating solution around the minimum of the effective potential while the unwrapped subvolume expands monotonically. The flux gives a logarithmic bounce to the effective potential of the internal dimensions.  相似文献   

17.
In this Letter we have investigated the cosmological dynamics of non-locally corrected gravity involving a function of the inverse d'Alembertian of the Ricci scalar, f(−1R)f(−1R). Casting the dynamical equations into local form, we derive the fixed points of the dynamics and demonstrate the existence and stability of a one parameter family of dark energy solutions for a simple choice, f(−1R)∼exp(α−1R)f(−1R)exp(α−1R). The effective EoS parameter is given by, weff=(α−1)/(3α−1)weff=(α1)/(3α1) and the stability of the solutions is guaranteed provided that 1/3<α<2/31/3<α<2/3. For 1/3<α<1/21/3<α<1/2 and 1/2<α<2/31/2<α<2/3, the underlying system exhibits phantom and non-phantom behavior respectively; the de Sitter solution corresponds to α=1/2α=1/2. For a wide range of initial conditions, the system mimics dust like behavior before reaching the stable fixed point. The late time phantom phase is achieved without involving negative kinetic energy fields. A brief discussion on the entropy of de Sitter space in non-local model is included.  相似文献   

18.
Starting from a five-dimensional (5D) vacuum theory of gravity where the extra coordinate is considered as non-compact, we investigate the possibility of inducing four-dimensional (4D) phantom scenarios by applying form-invariance symmetry transformations. In particular we obtain phantom scenarios for two cosmological frameworks. In the first framework we deal with an induced 4D de Sitter expansion and in the second one a 4D induced model where the expansion of the universe is dominated by a decreasing cosmological parameter Λ(t)Λ(t) is discussed.  相似文献   

19.
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.  相似文献   

20.
We note that in extensions of the Standard Model that allow for a varying fine structure constant, α, all matter species, apart from right-handed neutrinos, will gain an intrinsic electric dipole moment (EDM). In a large subset of varying-α theories, all such particle species will also gain an effective electric charge. This charge will, in general, not be quantised and can result in macroscopic non-conservation of electric charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号