首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A search for new phenomena in tt events with large missing transverse momentum in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The measurement is based on 1.04 fb(-1) of data collected with the ATLAS detector at the LHC. Contributions to this final state may arise from a number of standard model extensions. The results are interpreted in terms of a model where new top-quark partners are pair produced and each decay to an on-shell top (or antitop) quark and a long-lived undetected neutral particle. The data are found to be consistent with standard model expectations. A limit at 95% confidence level is set excluding a cross section times branching ratio of 1.1 pb for a top-partner mass of 420 GeV and a neutral particle mass less than 10 GeV. In a model of exotic fourth generation quarks, top-partner masses are excluded up to 420 GeV and neutral particle masses up to 140 GeV.  相似文献   

2.
In several scenarios of beyond Standard Model physics a new heavy resonance is invoked which may decay preferentially, to a pair of taus. Identification of the decay of Standard Model Z resonance to tau pairs at LHC via subsequent decays of the taus to leptons as well as hadrons is the first step towards the discovery. A method has been suggested to discriminate Z to tau pair to electron+muon final state against various backgrounds, for early phase of 14 TeV LHC.  相似文献   

3.
We explore the discovery potential of Higgs pair production at a 100 Te V collider via full leptonic mode.The same mode can be explored at the LHC when Higgs pair production is enhanced by new physics. We examine two types of fully leptonic final states and propose a partial reconstruction method, which can reconstruct some useful kinematic observables. It is found that the m T2 variable determined by this reconstruction method and the reconstructed visible Higgs mass are crucial to discriminate the signal and background events. It is also noticed that a new variable, denoted as ?m, which is defined as the mass difference of two possible combinations, is very useful as a discriminant. To examine the detector effects, we consider seven detector setups for a 100 Te V collider and investigate the changes in the sensitivity, and we find that lepton isolation and the minimal lepton P t cut are crucial in order to reduce the integrated luminosity.  相似文献   

4.
A search for a Higgs boson in the four-lepton decay channel H→ZZ, with each Z boson decaying to an electron or muon pair, is reported. The search covers Higgs boson mass hypotheses in the range of 110100 GeV (with 13 below 160 GeV), while 67.1±6.0 (9.5±1.3) events are expected from background. The four-lepton mass distribution is consistent with the expectation of standard model background production of ZZ pairs. Upper limits at 95% confidence level exclude the standard model Higgs boson in the ranges of 134-158 GeV, 180-305 GeV, and 340-465 GeV. Small excesses of events are observed around masses of 119, 126, and 320 GeV, making the observed limits weaker than expected in the absence of a signal.  相似文献   

5.
A search for pair production of first-generation scalar leptoquarks is performed in the final state containing two electrons and two jets using proton-proton collision data at √s = 7 TeV. The data sample used corresponds to an integrated luminosity of 33 pb?1 collected with the CMS detector at the CERN LHC. The number of observed events is in good agreement with the predictions for the standard model background processes, and an upper limit is set on the leptoquark pair production cross section times β2 as a function of the leptoquark mass, where β is the branching fraction of the leptoquark decay to an electron and a quark. A 95% confidence level lower limit is set on the mass of a first-generation scalar leptoquark at 384 GeV for β = 1, which is the most stringent direct limit to date.  相似文献   

6.
We discuss how the mass of new physics particles involved in a pair of short decay chains leading to two invisible particles, for example slepton pair production, followed by the decay into two leptons and two neutralinos, may be measured in central exclusive production (CEP) with forward proton tagging. We show how the existing mass measurement strategies in CEP may be improved by making full use of the mass-shell constraints, and demonstrate that, with around 30 signal events, the masses of the slepton and neutralino can be measured with an accuracy of a few GeV.  相似文献   

7.
We investigate a model in which tiny neutrino masses are generated at the two-loop level by using scalar leptoquark and diquark multiplets. The diquark can be singly produced at the LHC, and it can decay into a pair of leptoquarks through the lepton number violating interaction. Subsequent decays of the two leptoquarks can provide a clear signature of the lepton number violation, namely two QCD jets and a pair of same-signed charged leptons without missing energy. We show that the signal process is not suppressed while neutrino masses are appropriately suppressed.  相似文献   

8.
We investigate the charged Higgs boson signal at the LHC using its dominant production and decay modes with triple b-tagging, i.e. , followed by leptonic decay of one W and hadronic decay of the other. We consider the continuum background from the associated production of with a b- or a light quark or gluon jet, which can be mis-tagged as b-jet. We reconstruct the top quark masses to identify the 3rd b-jet accompanying the pair, and use its pT distribution to distinguish the signal from the background. Combining this with the reconstruction of the H± mass gives a viable signature over two interesting regions of the parameter space – i.e. tanβ1 and mt/mb.  相似文献   

9.
Inclusive standard model Higgs boson pair production and subsequent decay to same-sign dileptons via weak gauge W+/- bosons at the CERN Large Hadron Collider (LHC) has the capability to determine the Higgs boson self-coupling, lambda. The large top quark mass limit is found not to be a good approximation for the signal if one wishes to utilize differential distributions in the analysis. We find that it should be possible at the LHC with design luminosity to establish that the standard model Higgs boson has a nonzero self-coupling and that lambda/lambda(SM) can be restricted to a range of 0-3.7 at 95% confidence level if its mass is between 150 and 200 GeV.  相似文献   

10.
We present a general solution to the long-standing problem of determining the masses of pair-produced, semi-invisibly decaying particles at hadron colliders. We define two new transverse kinematic variables M(CT)(⊥) and M(CT)(∥), which are suitable one-dimensional projections of the contransverse mass M(CT). We derive analytical formulas for the boundaries of the kinematically allowed regions in the (M(CT)(⊥),M(CT)(∥)) and (M(CT)(⊥),M(CT)) parameter planes and introduce suitable variables D(CT)(∥) and D(CT) to measure the distance to those boundaries on an event per event basis. We show that the masses can be reliably extracted from the end-point measurements of M(CT)(⊥)(max) and D(CT)(min) (or D(CT)(∥)(min)). We illustrate our method with dilepton tt events at the LHC.  相似文献   

11.
We introduce a variable useful for measuring masses of particles which are pair produced at hadron colliders, where each particle decays to one particle that is directly observable and another particle whose existence can only be inferred from missing transverse momentum. This variable is closely related to the transverse mass variable commonly used for measuring the W mass at hadron colliders, and like the transverse mass our variable extracts masses in a reasonably model independent way. Without considering either backgrounds or measurement errors we consider how our variable would perform measuring the mass of selectrons in a mSUGRA SUSY model at the LHC.  相似文献   

12.
The results of the first search for long-lived gluinos produced in 7 TeV pp collisions at the CERN Large Hadron Collider are presented. The search looks for evidence of long-lived particles that stop in the CMS detector and decay in the quiescent periods between beam crossings. In a dataset with a peak instantaneous luminosity of 1×10(32) cm-2 s-1, an integrated luminosity of 10 pb-1, and a search interval corresponding to 62 hours of LHC operation, no significant excess above background was observed. Limits at the 95% confidence level on gluino pair production over 13 orders of magnitude of gluino lifetime are set. For a mass difference mg - mχ1(0) >100 GeV/c2, and assuming BR(g→gχ1(0))=100%, mg < 370 GeV/c2 are excluded for lifetimes from 10 μs to 1000 s.  相似文献   

13.
We outline some of the popular mass restricting variables for the semi-invisible productions at the Large Hadron Collider. In this context, heavy resonating mass, if produced through antler decay topology may already be detectable. New mass variables constructed by applying this mass constraint proved to have an array of interesting properties, including a new kink solution at the true masses of the produced particles. This enables one to measure the mass of the invisible particle and the parent particle simultaneously. This variable in turn can also be applied in reconstructing such events with the momenta of invisible particles. This feature is further demonstrated with the Higgs boson decaying into a pair of third-generation tau-lepton (\(\tau \)) and thus exploring direct Higgs coupling with the leptonic sector. Dominant discovery signatures rely upon the hadronic decay of tau which is associated with a pair of invisible neutrinos. Exploiting the already measured Higgs mass bound, present technique is capable of providing unique event reconstruction. Moreover, a significant efficiency enhancement is demonstrated in comparison with the existing methods.  相似文献   

14.
A search for pair production of second-generation scalar leptoquarks in the final state with two muons and two jets is performed using proton-proton collision data at √s = 7 TeV collected by the CMS detector at the LHC. The data sample used corresponds to an integrated luminosity of 34 pb?1. The number of observed events is in good agreement with the predictions from the standard model processes. An upper limit is set on the second-generation leptoquark cross section times β2 as a function of the leptoquark mass, and leptoquarks with masses below 394 GeV are excluded at a 95% confidence level for β = 1, where β is the leptoquark branching fraction into a muon and a quark. These limits are the most stringent to date.  相似文献   

15.
We discuss same-sign dilepton production mediated by Majorana neutrinos in high-energy proton–proton collisions for at the LHC energy TeV, and in the rare decays of the , and B mesons of the type . For the pp reaction, assuming one heavy Majorana neutrino of mass , we present discovery limits in the plane where are the mixing parameters. Taking into account the present limits from low-energy experiments, we show that at LHC one has sensitivity to heavy Majorana neutrinos up to a mass TeV in the dilepton channels , and , but the dilepton states will not be detectable due to the already existing constraints from neutrinoless double beta decay. We work out a large number of rare meson decays, both for the light and heavy Majorana neutrino scenarios, and argue that the present experimental bounds on the branching ratios are too weak to set reasonable limits on the effective Majorana masses. Received: 24 April 2001 / Published online: 29 June 2001  相似文献   

16.
Once neutrinoless double beta decay is discovered, the question which mechanism triggers the decay becomes crucial for drawing any conclusion about the concrete physics underlying the process, like the neutrino Majorana mass. For example, in the minimal supersymmetric extension with R-parity violation both neutrino Majorana masses and superpartners can trigger the decay. We show that in this case, if the decay is triggered by superpartners, there exist good prospects to observe single slepton production at the LHC. Resonant single slepton production at the LHC can therefore discriminate between the neutrinoless double beta decay mechanism and others.  相似文献   

17.
A method for the simultaneous determination of the energy scales for bottom-quark jets and light jets, the jet energy resolution, and the top quark mass at hadron colliders is presented. The method exploits the unique kinematics of events with top-antitop pair production, where one of the top quarks involves a leptonic and one a hadronic boson decay. The paper shows a feasibility study of how this simultaneous measurement can be performed at the upcoming LHC experiments ATLAS and CMS.  相似文献   

18.
We summarize some results of an ongoing study of the chaotic scattering interaction between a bound pair of stars (a binary) and an incoming field star. The stars are modeled as point masses and their equations of motion are numerically integrated for a large number of initial conditions. The global features of the resulting initial-value space maps are presented, and their evolution as a function of system parameters is discussed. We find that the maps contain regular regions separated by rivers of chaotic behavior. The probability of escape within the chaotic regions is discussed, and a straightforward explanation of the scaling present in these regions is reviewed. We investigate a statistical quantity of interest, namely the cross section for temporarily bound interactions, as a function of the third star's incoming velocity and mass. Finally, a new way of considering long-lived trajectories is presented, allowing long data sets to be qualitatively analyzed at a glance.  相似文献   

19.
We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into quarks and an LSP for the case of nonuniversal gaugino masses. Visibility of a signal by an excess over the SM background in (n≥2)jets+E T miss events depends rather strongly on the relation between the LSP, gluino, and squark masses and decreases with increasing LSP mass. For a relatively heavy LSP mass close to the squark or the gluino mass and for $m_{\tilde q} ,m_{\tilde g} \geqslant 1.5$ TeV, the sygnal is overly small to be observable.  相似文献   

20.
We initiate the study of exotic Higgs decays to long-lived particles(LLPs) at proposed future lepton colliders, focusing on scenarios with displaced hadronic final states. Our analysis entails a realistic tracker-based search strategy involving the reconstruction of displaced secondary vertices and the imposition of selection cuts appropriate for eliminating the largest irreducible backgrounds. The projected sensitivity is broadly competitive with that of the LHC and potentially superior at lower LLP masses. In addition to forecasting branching ratio limits, which may be freely interpreted in a variety of model frameworks, we interpret our results in the parameter space of a Higgs portal Hidden Valley and various incarnations of neutral naturalness, illustrating the complementarity between direct searches for LLPs and precision Higgs coupling measurements at future lepton colliders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号