首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.  相似文献   

2.
Fundamental understanding of the material science and rheological engineering to fabricate Torlon® 4000T-MV and 4000TF hollow fiber membranes with an ultra-thin and defect-free dense-selective layer for gas separation has been revealed. We have firstly investigated the rheology of Torlon® 4000T-MV and 4000TF dope solutions, and then determined the effect of temperature-correlated shear and elongational viscosities on the formation of Torlon® fibers for gas separation. Interestingly, Torlon® 4000T-MV and 4000TF possess different rheological characteristics: the elongational viscosity of Torlon® 4000T-MV/NMP solution shows strain thinning, while Torlon® 4000TF/NMP solution shows strain hardening. The balanced viscoelastic properties of dope solutions, which are strongly dependent on the spinning temperature, have been found to be crucial for the formation of a defect-free dense layer. The optimum rheological properties to fabricate Torlon® 4000T-MV/NMP hollow fibers appear at about 48–50 °C, and the resultant fibers have an O2/N2 selectivity of 8.37 and an apparent dense layer thickness of 781 Å. By comparison, the best Torlon® 4000TF fibers were spun at 24 °C with an O2/N2 selectivity of 8.96 and a dense layer of 1116 Å. The CO2/CH4 selectivity of the above two Torlon® variants is 47 and 53.5, respectively.  相似文献   

3.
The high demands on high performance membranes for energy, water and life science usages provide the impetus for membrane scientists to search for a comprehensive understanding of membrane formation from molecular level to design membranes with desirable configuration and separation performance. This pioneering work is to elaborate the importance of polymer rheology on hollow fiber formation and reveal the integrated science bridging polymer fundamentals such as polymer cluster size, shear and elongational viscosities, molecular orientation, stress relaxation to membrane microstructure and separation performance for gas separation. Torlon® poly(amide imide) was employed in this study with various solvent/nonsolvent additives. The effects of additives on polymeric cluster size, hydrogen bonding and dope rheology during the phase inversion have been examined. It is found that hydrogen bonding and strain-hardening characteristics play very important roles in dope rheology and membrane separation performance. Torlon® possesses strong hydrogen bonds with NMP/water mixtures, the addition of a small amount of water enlarges polymer cluster size, strengthen molecular network (i.e., strain hardening) and facilitate macrovoid-free morphology. However, strong hydrogen bonding may retard chain unfolding during spinning, induce faster relaxation for highly oriented dense-selective skin, and thus reduce gas-pair selectivity. By adjusting dope chemistry and spinning conditions with balanced solubility parameters and dope rheology, we have developed defect-free Torlon® hollow fiber membranes with an O2/N2 selectivity of 8.55 and an ultra-thin layer of 488 Å simply using water as the additive. Fibers spun from dopes containing other additives have the optimal O2/N2 selectivity varying from 7.69 to 9.97 at 25 ± 2 °C, and the dense layer thickness varying from 500 Å to 2000 Å. Their corresponding mixed-gas O2/N2 selectivity for compressed air varies from 7.12 to 9.00.  相似文献   

4.
固定铜铁的总质量不变, 采用共浸渍法制备铜铁双金属催化剂. 为了更好地了解催化剂的性质, 分别用N2吸附-脱附、H2-程序升温还原(H2-TPR)、NH3-程序升温脱附(NH3-TPD)、X射线衍射(XRD)和X射线光电子能谱(XPS)方法对制备的催化剂进行表征. 研究发现在100000 h-1空速下, 铜铁双金属催化剂呈现出好的活性和氮气选择性. 在低温区, 随着铜含量的增加, 活性和氮气的选择性增加, 然而在高温区氮气的选择性直接和铁的含量相关. 其中催化剂Fe0.25Cu0.75/ZSM-5, 在350℃氨的转化率达到最高, 在300℃氮气的选择性上升到97%. Fe0.75Cu0.25/ZSM-5 在500 ℃有很高的氮气选择性甚至可以达到98%. 并且所有的催化剂均产生很少的N2O副产物. 表征结果显示催化剂的酸量和铜物种的含量可以影响催化剂的活性, 并且高的还原能力和铁含量有助于高温氮气选择性的提高.  相似文献   

5.
An experimental and theoretical study has been used to investigate gas diffusion and solubility in PEBAX®2533 block copolymer membrane. Molecular simulations using COMPASS force field have been successful in predicting the gas-transport properties of a PEBAX®2533 block copolymer and of a pure PTMO homopolymer. Gusev–Suter transition state theory (TST) and Monte Carlo methods are used for simulating the transport of five permanent gases (He, H2, N2, O2, CO2 and CH4). Theoretical and experimental data have been compared.  相似文献   

6.
Poly(4-methyl-2-pentyne) (PMP) has been crosslinked using 4,4′-(hexafluoroisopropylidene) diphenyl azide (HFBAA) to improve its chemical and physical stability over time. Crosslinking PMP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume (FFV) decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PMP was due to decrease in diffusion coefficient. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (FS, TiO2), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O2/N2, H2/N2, CO2/N2, CO2/CH4 and H2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PMP membranes and PMP/filler nanocomposites over time.  相似文献   

7.
In this study, graphene nanosheets (GNs) were incorporated into polyethersulfone (PES) by phase inversion approach for preparing PES-GNs mixed matrix membranes (MMMs). To investigate the impact of filler content on membrane surface morphology, thermal stability, chemical composition, porosity and mechanical properties, MMMs were constructed with various GNs loadings (0.01, 0.02, 0.03, and 0.04 wt%). ?The performance of prepared MMMs was tested for separation and selectivity of CO2, N2, H2 and CH4 gases at various pressures from 1 to 6 bar and temperature varying from 20 to 60 °C. It was observed that, compared to the pristine PES membrane, the prepared MMMs significantly improved the gas separation and selectivity performance with adequate mechanical stability. The permeability of CO2, N2, H2 and CH4 for the PES + 0.04 wt% GNs increases from 9 to 2246, 11 to 2235, 9 to 7151, and 3 to 4176 Barrer respectively, as compared with pure PES membrane at 1 bar and 20 °C due to improving the membrane absorption and porosity. In addition, by increasing the pressure, the permeability and selectivity of CO2, N2, H2 and CH4 are increased due to the increased driving force for the transport of gas via membranes. Furthermore, the permeability of CO2, N2, H2 and CH4 increased by increasing the temperature from 20 to 60 °C due to the plasticization in the membranes and the improvement in polymer chain movement. This result proved that the prepared membranes can be used for gas separation applications.  相似文献   

8.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   

9.
Red mud wastes have been converted into mesoporous zeolite socony mobile-5 (ZSM-5) followed by deposited titanium dioxide (TiO2) nanoparticles to generate synergy adsorption-photodegradation for removal of dye removal in waste water. The amount of TiO2 loading was varied to achieve optimum photocatalytic activity while maintaining the mesoporosity and high surface area of ZSM-5. Sol-gel method facilitated the formation of anatase TiO2 on the ZSM-5. The fourier transform infrared spectra clarified the formation of Si–O–Ti at 957 cm?1 by the exchanging the hydrogen ion with titanium ion, which proved by decreasing the absorption band of Si–OH and Si–O interaction at 964 and 944 cm?1, respectively. Sol-gel method also preserved the mesopore diameter of ZSM-5 at 3.5 nm which allow the diffusion of methylene blue (MB) molecules into the pores. However, the surface area and the pore volume were slightly reduced with increasing the TiO2 loading. The adsorption performance of samples showed that the increasing in the TiO2 loading led to the decreasing in the adsorption capacity. All samples showed the suitability towards the pseudo second order kinetic. The Langmuir isotherm was suitable to describe the adsorption mechanism by monolayer adsorption. Mesoporosity of ZSM-5 accelerated the adsorption of dye via the increase of mass transfer in the pore channel which confirmed by the low intercept of intraparticle diffusion model at the first stage. The photocatalytic test showed that 10% TiO2 loading on the ZSM-5 exhibited the highest methylene blue removal followed by 5% and 20% TiO2 loading. Optimization on the amount of photocatalyst and the pH of solution indicated the reaction favoured 1 g L?1 of catalysts and at alkaline pH. 10% TiO2/ZSM-5 also exhibited high stability and reusability up to four reaction cycles. Photocatalytic performance of 10% TiO2/ZSM-5 was further investigated on photodegradation of malachite green and rhodamine B organic dyes, which showed the photocatalytic efficiency of 73 and 88%, respectively. Superoxide radical, hydroxyl radical, and photogenerated electron were identified as the main active species for MB photodegradation based on the reduction of degradation rate following the addition scavenger molecules.  相似文献   

10.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

11.
Polymeric membrane-based gas separation technology has significant advantages compared with traditional amine-based CO2 separation method. In this work, SEBS block copolymer is used as a polymer matrix to incorporate triethylene oxide (TEO) functionality. The short ethylene oxide segment is chosen to avoid crystallization, which is confirmed by differential scanning calorimetry and wide-angle X-ray scattering characterizations. The gas permeability results reveal that CO2/N2 selectivity increased with increasing content of TEO functional group. The highest CO2 permeability (281 Barrer) and CO2/N2 selectivity (31) were obtained for the membrane with the highest TEO incorporation (57 mol%). Increasing the TEO content in these copolymers results in an increase in CO2 solubility and a decrease in C2H6 solubility. For example, as the grafted TEO content increased from 0 to 57 mol%, the CO2 solubility and CO2/C2H6 solubility selectivity increased from 0.72 to 1.3 cm3(STP)/cm3 atm and 0.47 to 1.3 at 35°C, respectively. The polar ether linkage in TEO-grafted SEBS copolymers exhibits favorable interaction with CO2 and unfavorable interaction with nonpolar C2H6, thus enhancing CO2/C2H6 solubility selectivity.  相似文献   

12.
Mesopore ZSM-5 was prepared by alkali treatment of parent ZSM-5 zeolite and applied for butene catalytic cracking. The zeolite was treated in the NaOH solutions with different concentrations at 85 °C. XRD showed that the intrinsic MFI structure of ZSM-5 zeolite was preserved and corresponding crystallinity remained unchangeableness when ZSM-5 was treated with low concentration NaOH solutions. However, excessive NaOH led to the destruction of zeolite structure. The BET surface area increased obviously after desilication, and the N2 adsorption/desorption curves indicated a number of mesopores generation. The experiment of butene catalytic cracking was carried out in a fixed-bed to investigate the influence of mesopores. The results showed that catalytic performances can be greatly improved through introducing the mesopores into parent ZSM-5 by alkali treatment. Highest yield of ethylene plus propylene were obtained when the treated concentration of NaOH solution is 0.1–0.2 M.  相似文献   

13.
Sb/ZSM-5 was obtained by solid-state reaction with the mixture of Sb2O3 and zeolite HZSM-5 under a dry nitrogen flow at 773 K. Characterization of the treated zeolite was undertaken with XRD, 27Al MAS NMR, BET, TGA and FT-IR. The results revealed that part of the antimony oxides migrated into the channels of zeolite, and decreased the Brönsted acid sites in Sb/ZSM-5 remarkably. The other part of antimony oxides together with the amorphous alumino-silicate in the products distributed on the external surface of zeolite ZSM-5 and modified it, while the framework of ZSM-5 in crystal phase was retained. The structure of occluded antimony oxide inside the channels of ZSM-5 was studied by XRD Rietveld method. The result showed that their structure can be described as a chain of non-perfect [Sb5O5(H2O)2]n5n+, which is parallel to the straight channel of ZSM-5. There is about 0.6 [Sb5O5(H2O)2]5+ unit in every cell of the ZSM-5 on an average.  相似文献   

14.
富氧条件下 Mn/ZSM-5 选择催化 CH4 还原 NO   总被引:3,自引:0,他引:3  
 考察了富氧条件下 Mn/ZSM-5 催化剂上 CH4 选择催化还原 NO 反应, 并采用 H2程序升温还原、SO2程序升温表面反应和 NO程序升温脱附等手段对催化剂进行了表征. 结果表明, 催化剂活性与制备方法和 Mn 负载量密切相关. 离子交换法制备的 Mn/ZSM-5 催化剂活性明显优于浸渍法制备的催化剂; NO 转化率随着 Mn 负载量的增加而增加, 至 2.06% 时达到最大值 (57.3%), 然后随着 Mn 负载量的增加而降低. 采用离子交换法或较低 Mn 负载量 (≤ 2.06%) 抑制了催化剂中非化学计量的 MnOx (1.5 < x < 2) 物种的形成, 减缓了 CH4 的氧化燃烧反应, 因而 CH4 还原 NO 的选择性提高. 在含 SO2 体系中, Mn/ZSM-5 活性在 550 oC 以下时明显下降, 但在 600 oC 以上基本不受影响. 这是由于在 550 oC 以下时 SO2 在 Mn/ZSM-5 表面形成了稳定的吸附硫物种, 覆盖了部分活性位, 导致催化剂活性降低; 而在 600 oC 以上时含硫物种基本脱附完全, 因而对催化剂活性影响不大.  相似文献   

15.
Summary: The separation of H2/CO2 is technologically important to produce the next generation fuel source, hydrogen, from synthesis gas. However, the separation efficiency achieved by polymeric membranes is usually very low because of both unfavourable diffusivity selectivity and solubility selectivity between H2 and CO2. A series of novel diamino‐modified polyimides has been discovered to enhance the separation capability of polyimide membranes especially for H2 and CO2 separation. Both pure gas and mixed gas tests have been conducted. The ideal H2/CO2 selectivity in pure gas tests is 101, which is far superior to other polymeric membranes and is well above the Robeson's upper‐bound curve. Mixed gas tests show an ideal selectivity of 42 for the propane‐1,3‐diamine‐modified polyimide. The lower selectivity is a result of the sorption competition between H2 and the highly condensable CO2 molecules. However, both pure gas and mixed gas data are better than other polymeric membranes and above the Robeson's upper‐bound curve. It is evident that the proposed modification methods can alter the physicochemical structure of polyimide membranes with superior separation performance for H2 and CO2 separation.

Both pure gas and mixed gas separation properties of H2/CO2 for membranes derived from 6FDA‐durene with respect to the upper‐bound curve.  相似文献   


16.
The distribution of the copper-containing component in the pore volume of zeolite ZSM-5 has been investigated by H2 and N2 adsorption at 77 K and IR spectroscopy. Samples were synthesized by ion exchange and incipient wetness impregnation. Copper-containing clusters are mostly located on the surface of the mesopores formed by packed zeolite nanocrystallites. This causes partial blocking of the volume of microporous channels for N2 molecules, but these channels remain accessible for H2 molecules. It has been deduced that no considerable amount of copper located in the structural channels of the zeolite. According to IR spectroscopic data, the sorption of copper ions in the Cu/ZSM-5 catalysts takes place on extraframe-work aluminum, which forms Al-OH-Al bridges and terminal Al-OH groups, and on terminal Si-OH groups located on the zeolite crystal surface.  相似文献   

17.
The performances of various zeolite filled polymeric membranes in the separation of n-pentane from i-pentane were investigated as a function of zeolite loading and various experimental conditions. Polydimethylsiloxane (PDMS) was chosen as the polymer phase and HZSM-5, NaZSM-5, 4A and 5A were used as zeolite fillers. Different Si/Al ratios and different activation temperatures were tested for ZSM-5 and A type zeolites, respectively. No improvement with respect to the n-pentane/i-pentane ideal selectivity of the original polymeric membrane could be obtained for the mixed matrix membranes investigated in this study. Interactions occurring in the zeolite–polymer interface seem to play a significant role in the results obtained. n-Pentane consistently showed lower permeability than for the pure polymer. On the other hand, i-pentane permeability was not reduced and was even increased with increased zeolite loading in some cases. It is hypothesized that these trends reflect differences in interaction between the two chemically similar penetrants with the “interphase” region connecting the bulk polymer and dispersed zeolite phases. The Si/Al ratio, the cation type and the activation temperature of the zeolite employed also seem to affect the performance of the zeolite–PDMS mixed matrix membranes.  相似文献   

18.
Nickel catalysts supported on γ-Al2O3 were synthesized in the presence of polyvinylpyrrolidone (PVP) using both alkaline polyol method and hydrazine reduction method while fixing the weight ratio of [(PVP)]/[Ni(CH3COO)2·4H2O] at 2. The effects of hydrazine [N2H5OH]/[Ni] and [NaOH]/[Ni] molar ratios on the structural properties of the catalysts were characterized by transmission electron microscopy (HRTEM) and by X-ray diffraction (XRD). The average of monodispersed Ni nanoparticles ranged between 8.0 and 13.0 nm. The catalytic tests were performed for the partial oxidation of methane in the temperature range of 600–800 °C under a flow rate of 157,500 L kg–1 hr–1 with CH4/O2= 2. At the molar ratio of [NaOH]/[Ni] = 2, the resultant nickel nanoparticles on alumina was established completely without impurities; thus, it demonstrated the highest catalytic activity, 88% for CH4 conversion, and H2 selectivity, 90.60%. The optimum [N2H5OH]/[Ni] ratio was determined as 4.1, which means a good catalytic performance and 89.35% selectivity to H2 for the partial oxidation of methane.  相似文献   

19.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

20.
The Cu+/ZSM-5 and Ag+/ZSM-5 catalysts were prepared by a combination of ion-exchange and thermovacuum treatments. In situ photoluminescence, ESR, XAFS, UV-VIS and FT-IR measurements of the catalysts revealed that within the cavity of the ZSM-5 zeolite, the Cu+ ion or Ag+ ion exists in an isolated state. UV irradiation of the catalysts in the presence of NO at normal temperature led to the formation of N2 and O2 for Cu+/ZSM-5 and N2, N2O and NO2 for Ag+/ZSM-5, indicating that the isolated Cu+ ion or Ag+ ion acts as a photocatalyst for the direct decomposition of NO. However, the Cu+/ZSM-5 catalyst loses its photocatalytic reactivity under the coexistence of O2, while the Ag+/ZSM-5 catalyst maintains its reactivity under the coexistence of O2 and H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号