首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein–Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this Letter, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction terms of entropy, temperature and energy caused by the generalized uncertainty principle. We calculate Cardy–Verlinde formula after considering the correction. In our calculation, we only think that the Bekenstein–Hawking area theorem is still valid after considering the generalized uncertainty principle and do not introduce any assumption. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the corrections caused by the generalized uncertainty principle to the black hole thermodynamic quantity of the complicated spacetime.  相似文献   

2.
广义测不准关系与三维BTZ黑洞熵   总被引:1,自引:0,他引:1       下载免费PDF全文
赵仁  张丽春  李怀繁 《物理学报》2009,58(4):2193-2197
通过应用在量子引力中,由广义测不准关系得出的新的态密度方程,研究三维BTZ背景下黑洞的熵.当取广义测不准关系中引入的,具有Planck量级与空间维数有关的常数λ为特定值时,得到BTZ黑洞Bekenstein-Hawking 熵和修正项.由于利用新的态密度方程,在计算中不存在用brick-wall模型计算黑洞熵时出现的发散项和小质量近似.所得结论,从量子统计力学角度给出了黑洞Bekenstein-Hawking 熵的修正值,使人们对黑洞熵的修正值有更深入的认识. 关键词: 广义测不准关系 量子统计 BTZ黑洞熵  相似文献   

3.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for single horizon spacetime but also for spin axial symmetric spacetimes with double horizons. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.  相似文献   

4.
Taking into account the effect of the generalized uncertainty principle on the generalized black hole entropy and tacking the thin film brick-wall model, we calculate the entropy of the quantum scalar field in generalized static black hole. The Bekenstein–Hawking entropies of all well-known static black holes are obtained. The entropy of 2-D membrane just at the event horizon of static black hole is also calculated, and the result of the black hole entropy proportional to the event horizon area can be obtained more easily and generally. This discussion shows that black hole entropy is just identified with the entropy of the quantum field on the event horizon. The difference from the original brick-wall model is that the present result is convergent without any cutoff and the little mass approximation is removed. With residue theorem, the integral difficulty in the calculation of black hole entropy is overcome.  相似文献   

5.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, based on the correction to black hole thermodynamic quantity due to the generalized uncertainty principle, we calculate the partition function by energy spectrum obtained using tunneling effect. Furthermore we derive the black hole entropy. In the expression, we not only consider the generalized uncertainty principle but also consider the departure of black hole radiation spectrum from pure thermal spectrum. According to criterion law of thermodynamic systems phase transition, we discuss the phase transition of AdS black hole and derive that the phase transition of AdS black hole is a secondary one.  相似文献   

6.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.  相似文献   

7.
赵仁  张丽春  武月琴  李怀繁 《中国物理 B》2010,19(1):10402-010402
After considering the generalized uncertainty principle, we discuss the quantum tunneling radiation of a five-dimensional Schwarzschild anti de Sitter black hole. The radiation spectrum and the correction value of the Bekenstein-Hawking entropy are derived. In a five-dimensional black hole the one order correction term in the Bekenstein-Hawking entropy correction term is proportional to the third power of the area, and the logarithmic correction term is a two-order small quantity. The correction term is related to the dimension constant introduced in the generalized uncertainty principle. Because the black hole entropy is not divergent, the lowest value of the five-dimensional Schwarzschild anti de Sitter black hole horizon radius is obtained. After considering the generalized uncertainty principle, the radiation spectrum is still consistent with normalization theory.  相似文献   

8.
Recently, there has been much attention devoted to resolving the quantum corrections to the BekensteinHawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.  相似文献   

9.
In this paper we propose a way of determining the subleading corrections to the Bekenstein-Hawking black hole entropy by considering a modified generalized uncertainty principle with two parameters. In the context of modified generalized uncertainty principle, coefficients of the correction terms of black hole entropy are written in terms of combination of the parameters. We also obtained the corrections to the Stefan-Boltzman law and the black hole evaporation in terms of the parameters. By estimating those parameters, say by experiment, one can test results from other context of quantum gravity theories such as black hole entropy.  相似文献   

10.
Based on the generalized uncertainty principle, in which the quantum gravitational effects are properly taken in to account, the corrected Bekenstein-Hawking entropy of the higher dimensional Reissner-Nordström black hole, up to the square order of Planck length, has been calculated. Using the corrected entropy, the black hole radiation probability has been calculated in the tunneling formalism, which is corrected up to the same order of the Planck length and a generalized quantum tunneling through the event horizon of the black hole is obtained.  相似文献   

11.
Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model.  相似文献   

12.
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.  相似文献   

13.
Using the new equation of state density from the generalized uncertainty principle in quantum gravity, we study statistical entropy of a dielectric black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we find that the leading term of the statistical entropy of the dielectric black hole takes the Bekenstein-Hawking entropy form. In addition a finite correction term is also obtained. Comparing with the original brick-wall model, in our calculation there is no divergence and the small mass approximation is also not needed.  相似文献   

14.
Based on the generalized uncertainty relation, the corrected Beckenstein–Hawking black hole entropy in the higher dimensional space–times is calculated. Using the corrected entropy, the black hole radiation is obtained in the tunneling formalism.  相似文献   

15.
Quantum Entropy of Black Hole with Internal Global Monopole   总被引:2,自引:0,他引:2  
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.  相似文献   

16.
黄海  贺锋  孙航宾 《物理学报》2012,61(11):110403-110403
利用广义不确定关系修正的态密度方程并采用Wentzel-Kramers-Brillouin (WKB) 近似方法, 计算了Reissner-Nordström-de Sitter (RNdS) 黑洞时空中标量场的统计力学熵. 结果表明, 由这种方法得到的黑洞熵与它的内、外视界面积和宇宙视界面积之和成正比, 这与采用其他方法所得的结果一致, 从而揭示了黑洞熵与视界面积之间的内在联系, 也进一步表明了黑洞熵是视界面上量子态的熵, 是一种量子效应.  相似文献   

17.
Recently, there has been much attention devoted to the correction to the black hole radiation spectrum and the quantum corrections to Bekenstein-Hawking entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the radiation spectrum of arbitrary dimension Schwarzschild black hole after considering the generalized uncertainty principle. The correction value of Bekenstein-Hawking entropy is derived.  相似文献   

18.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein-Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Verlinde formula is derived. In our calculation, Bekenstein-Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.  相似文献   

19.
杨学军  赵峥 《物理学报》2011,60(8):80402-080402
砖墙模型被广泛用于静态或稳态黑洞熵的计算,但为了避免发散,砖墙模型需要引入一紫外截断因子. 截断因子的引入至今没有给以合理的解释. 有工作表明,用砖墙模型或薄膜模型计算黑洞熵时,若采用广义不确定关系则可以去掉截断因子. 证明了将广义不确定关系用于砖墙模型计算Schwarzschild黑洞熵时,由于砖墙模型给出熵的第一项既是Bekenstein-Hawking项又含有截断因子,因此在去掉截断因子的同时也丢掉了Bekenstein-Hawking项,将得不到黑洞熵. 关键词: 黑洞熵 砖墙模型 截断因子 广义不确定关系  相似文献   

20.
The generalized uncertainty relation is introduced to calculate entropy of the black hole. By using quantum statistical method, we directly obtain the partition function of Bose and Fermi field on the background of the plane symmetry black hole. Then we calculate the entropy of Bose and Fermi field on the background of black hole near the horizon of the black hole. In our calculation, we need not introduce cutoff. There are not the left out term and the divergent logarithmic term in the original brick-wall method. And it is obtained that the entropy of the black hole is proportional to the area of the horizon. The inherent contact between the entropy of black hole and the area of horizon is opened out. Further it is shown the entropy of black hole is entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号