首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用自行搭建的膜分离实验台,考察了共存气态组分以及颗粒物对于聚二甲基硅氧烷/聚砜(PDMS-PSF)复合膜分离CO2性能的影响.结果表明,共存气态组分中O2对于膜分离CO2有抑制作用;由于SO2浓度显著低于CO2,在短时间内对膜分离CO2没影响;水汽可以促进CO2的分离;燃煤飞灰细颗粒在分离膜表面沉积会导致膜性能的恶化.在此基础上,采用模拟湿法烟气脱硫系统装置,进行了燃煤湿法脱硫净烟气环境下的膜分离CO2实验;在测试的50 h以内,水汽、SO2和O2的共同作用导致膜分离性能在前期有一定的提高,随着运行时间的延长,细颗粒物对膜的影响程度加大,导致PDMS-PSF复合膜的分离性能逐渐恶化,最终导致膜的CO2/N2分离因子和CO2渗透速率分别下降了17.91%和28.21%.  相似文献   

2.
A poly(amidoamine) (PAMAM) dendrimer composite membrane with an excellent CO2/N2 separation factor was developed in-situ. The In-situ Modification (IM) method was used to modify the surface of commercial porous membranes, such as ultrafiltration membranes, to produce a gas selective layer by controlling the interface precipitation of the membrane materials in the state of a received membrane module. Using the IM method, a chitosan layer was prepared on the inner surface of a commercially available ultrafiltration membrane as a gutter layer, in order to affix PAMAM dendrimer molecules on the porous substrate. After chitosan treatment, the PAMAM dendrimer was impregnated into the gutter layer to form a PAMAM/chitosan hybrid layer. The CO2 separation performance of the resulting composite membrane was tested at a pressure difference of 100 kPa and a temperature of 40 °C, using a mixed CO2 (5 vol%)/N2 (95 vol%) feed gas. The PAMAM dendrimer composite membrane, with a gutter layer prepared from ethylene glycol diglycidyl ether and a 0.5 wt% chitosan solution of two different molecular weight chitosans, revealed an excellent CO2/N2 separation factor and a CO2 permeance of 400 and 1.6 × 10−7 m3 (STP) m−2 s−1 kPa−1, respectively. SEM observations revealed a defect-free chitosan layer (thickness 200 nm) positioned directly beneath the top surface of the UF membrane substrate. After PAMAM dendrimer treatment, the hybrid chitosan/PAMAM dendrimer layer was observed with a thickness of 300 nm. XPS analysis indicated that the hybrid layer contained about 20–40% PAMAM dendrimer.  相似文献   

3.
高效、绿色和低能耗的CO_2捕集技术是解决能源气体净化和温室气体减排问题的关键。膜分离技术以其高效、节能、低碳等特点在CO_2捕集领域具有潜在的发展前景。目前,CO_2分离膜的研究主要集中在混合基质膜内的填充剂,通过调控填充剂解决膜内渗透性和选择性间的"博弈"效应。近年来,研究者们发现填充剂通常是影响混合基质膜分离性能的关键因素,采用不同的填充剂可改善混合基质膜的气体分离性能。基于此,本文对目前已经开发出的填充剂进行了归纳总结,以便为设计开发新型混合基质膜用于CO_2分离提供参考。  相似文献   

4.
The facility for the analysis of chemical thermodynamics method (F*A*C*T) based on the Gibbs energy minimization principle, was used to characterize the evaporation of mineral elements of coal in O2/CO2 recycle combustion. The effects of atmosphere and temperature on the speciation of mineral species were discussed. The results show that Na(K)Cl(g), FeO(g), and SiO(g) are the dominant gaseous species of the mineral elements. The dominant species of mineral elements in flue gases depend on both the combustion conditions (reducing or oxidizing) and the atmosphere. In O2/CO2 mixture combustion, the evaporation rate of mineral elements is much lower than that in air combustion, especially under reducing atmosphere. The total evaporation of mineral elements in O2/CO2 atmosphere and air combustion under reducing conditions is 4.46% and 9.65% respectively, up to the temperature of 2400 K. The calculation values are consistent with the experiment values. The decrease in the mineral element evaporation is helpful to suppress the tendency to form fine particle matter and the tendency of initial ash deposition.  相似文献   

5.
采用自组装和化学沉淀法分别制得两种可见光驱动复合材料石墨相氮化碳/碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3).采用X射线衍射光谱(XRD),紫外可见光谱、扫描电镜(SEM)、N_2吸附、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)等分析手段对制备的催化剂进行了表征.结果表明,制备方法对纳米复合材料的晶相、形态及光学性能没有影响,但是影响g-C_3N_4和Bi_2O_2CO_3之间的相互作用力,导致光生电子-空穴对的分离速率存在显著差异.以可见光驱动苯酚和罗丹明B的降解实验为探针反应检测催化剂的光催化性能.实验结果表明自组装法得到的异质结催化剂中相互作用力更强,催化效果最高.O_2-是罗丹明B降解反应的主要活性物种,染料的光敏化、Bi_2O_2CO_3与g-C_3N_4综合效应,导致光生载流子电荷分离效率更高.  相似文献   

6.
利用溶剂热法合成了不同锂含量的MOF-5(xLi-MOF-5, x=0, 1, 3, 5).在MOF-5结晶过程中,锂离子被合并入其骨架结构中.实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质.不同的xLi-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变.其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40% CO2/60% CH4混合气体具有最优吸附选择性.  相似文献   

7.
利用溶剂热法合成了不同锂含量的MOF-5(x Li-MOF-5,x=0,1,3,5)。在MOF-5结晶过程中,锂离子被合并入其骨架结构中。实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质。不同的x Li-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变。其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40%CO2/60%CH4混合气体具有最优吸附选择性。  相似文献   

8.
胺类分子在CO2的捕获中可以起到选择性提升的作用,本文选择小尺寸的乙二胺分子对具有不饱和金属位点的轻金属铝基金属有机骨架(Al-MOFs)材料MIL-100Al进行改性,利用XRD、N2吸附和FT-IR等对改性材料的结构进行表征,测试了不同浓度的乙二胺改性的MIL-100Al对CO2和CH4吸附性能。结果表明,与原始的MIL-100Al材料相比,改性后的材料对CO2吸附量有明显提高,CH4的吸附量却降低,从而进一步提高了材料的CO2/CH4吸附选择性,提升了吸附分离的效果。  相似文献   

9.
Solid, polymer membranes fabricated from room-temperature ionic liquid monomers containing oligo(ethylene glycol) or nitrile-terminated alkyl substituents tethered to imidazolium cations were found to exhibit ideal CO2/N2 and CO2/CH4 separation factors significantly greater than those with comparable length n-alkyl substituents, with similar CO2 permeability. Polymers containing these functional groups exhibited CO2/N2 gas separation performance exceeding the “upper bound” of a “Robeson Plot”.  相似文献   

10.
The flue gas from fossil fuel power plants is a long-term stable and concentrated emission source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2 uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min). These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under high humidity conditions in industrial settings.  相似文献   

11.
胺类分子在CO_2的捕获中可以起到选择性提升的作用,本文选择小尺寸的乙二胺分子对具有不饱和金属位点的轻金属铝基金属有机骨架(Al-MOFs)材料MIL-100Al进行改性,利用XRD、N2吸附和FT-IR等对改性材料的结构进行表征,测试了不同浓度的乙二胺改性的MIL-100Al对CO_2和CH4吸附性能。结果表明,与原始的MIL-100Al材料相比,改性后的材料对CO_2吸附量有明显提高,CH4的吸附量却降低,从而进一步提高了材料的CO_2/CH4吸附选择性,提升了吸附分离的效果。  相似文献   

12.
A defect-free ultra thin PVAm/PVA blend facilitated transport membrane cast on a porous polysulfone (PSf) support was developed and evaluated in this study. The target membrane was prepared from commercial polyvinyl amine (PVAm) and polyvinyl alcohol (PVA). Effects of experimental conditions were investigated for a CO2–N2 mixed gas. A CO2/N2 separation factor of up to 174 and a CO2 permeance up to 0.58 m3(STP)/(m2 h bar) were documented. Experimental results suggest that CO2 is being transported according to the facilitated transport mechanism through this membrane. The fixed amino groups in the PVAm matrix function as CO2 carriers to facilitate the transport whereas the PVA adds mechanical strength to the blend by entanglement of the polymeric chains hence creating a supporting network. The good mechanical properties obtained from the blend of PVA with PVAm, enabled an ultra thin selective layer (down to 0.3 μm) to be formed on PSf support (with MWCO of 50,000), resulted in both high selectivity and permeance. The PVAm/PVA blend membrane also exhibited a good stability during a 400 h test.  相似文献   

13.
In this work, the mechanochemical synthesis of a moderately agglomerated tin oxide (SnO2) powders and the subsequent preparation of semiconductor gas sensors as prototypes, were studied. Tin (II) chloride (SnCl2) powder was milled with calcium hydroxide (Ca(OH)2) and potassium carbonate, (K2CO3) powder, respectively, in a ball mill at room temperature and in an air atmosphere. Heat treatment of milled mixtures at 400 °C resulted in the formation of a tetragonal phase, confirmed by X-ray diffraction (XRD). During milling in the presence of water, a high number of hydroxide (OH) groups are formed at the surface. When SnCl2 was milled with K2CO3, no water was produced and the Fourier-transform infrared spectrum (FT-IR) of the powder has no surface hydroxyl deformations. On exposure to hydrogen sulfide (H2S) gas, the particles, prepared from anhydrous powder, have higher sensitivity than these, prepared from hydrated powder. The SnO2 thick film, prepared from anhydrous powder may be successfully applied to a H2S gas sensor.  相似文献   

14.
The aim of present project was to develop a microcosm experimental method for estimation of NOx and CO2 emission of microbial origin from cultivated soil. The effect of different factors (such as temperature, water supply, mineral-N source and organic matter addition, role of soil organisms and heavy metal contamination) that controlling the accumulation of N2O and CO2 in soil atmosphere and release to air was studied in closed microcosm laboratory model experiments. The headspace gas composition of closed glass vessels of 800-1200 cm3 containing 100-200 g brown forest soil sample was analysed. The N2O and CO2 concentration of gas samples was analysed by gas chromatographic methods and NO-content by means of chemiluminescent detection. Concerning the results, it can be stated that the applied microcosm experimental model proved to be a suitable tool for detecting the effect of factors influencing the NOx and CO2 release from agricultural soil. The temporal changes of N2O and CO2 concentration demonstrated the impact of the coupled microbial processes resulting in these greenhouse gases. The gas production depended on the soil moisture level, temperature and C/N ratio significantly. The inhibitory effect of toxic heavy metals (e.g. Cd) could also be affected by the C/N ratio. The appearance of NO as an intermediate of microbial processes was observed as well.  相似文献   

15.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step.  相似文献   

16.
Polymeric membranes have shown tremendous promise for the separation of CO2 from flue gas streams. However, few systematic studies have been conducted to better understand the impact that chemical functionalities have on membrane-based gas separation performance. To address this gap, we herein describe the synthesis and gas separation performance of a series of vinyl-addition polynorbornenes bearing various CO2-philic functional groups. To facilitate direct comparison between functional groups, each material was designed to maintain a common polymer backbone. Though the incorporation of CO2-philic moieties within a dense polymeric membrane is frequently hypothesized to enhance CO2 solubility, and thereby increase CO2/N2 selectivity, our results demonstrate that the incorporation of CO2-philic groups onto a common polymer backbone do not necessarily result in increased gas separation performance. Experimental and computational results demonstrate that the incorporation of amidoxime groups onto a polynorbornene backbone increase CO2/N2 selectivity, whereas commonly employed ethereal side chains only increased permeability.  相似文献   

17.
王伟彬  银建中 《化学进展》2008,20(4):441-449
目前已知的绿色溶剂主要包括超临界流体(Supercritical fluids,SCFs)、离子液体(Ionic liquids,ILs)、二氧化碳膨胀液体(CO2 expanded liquids, CXLs)、水以及上述溶剂的混合物等。其中,由超临界CO2(Supercritical CO2,SCCO2)与ILs混合而构成的新兴溶剂,因为化学热力学方面的特性,成为近年来研究的热点,未来很有发展前景。本文回顾了目前为止在该领域所开展的工作,总结了影响SCCO2与IL相行为的主要因素。包括温度、压力、ILs的含水量、ILs的阴离子、ILs的阳离子、ILs的摩尔体积以及助溶剂等。同时分析了ILs/SCCO2与溶质形成的多元混合物相行为的成因。介绍了ILs/CO2在萃取、反萃取、膜分离、反胶束、萃取与反应耦合等分离方面的应用。由于传统的单元操作很难满足无污染和对过程集成的要求,因而含有ILs/ SCCO2的分离反应耦合过程将是未来是实现清洁生产的发展方向。  相似文献   

18.
This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2/N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel‐fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2/N2 selectivity are designed by incorporating CO2‐philic groups in polymers such as poly(ethylene oxide)‐containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2/N2 separation properties for CO2 capture from flue gas are highlighted.  相似文献   

19.
Poly(amidoamine) (PAMAM) dendrimers showed high CO2 separation properties and were successfully immobilized in a poly(ethylene glycol) (PEG) network upon photopolymerization of PEG dimethacrylate. The PAMAM dendrimer incorporation ratio was readily controlled, and a stable self-standing membrane containing up to 75 wt.% PAMAM dendrimer was obtained. The CO2 separation properties over smaller H2 were investigated by changing the PAMAM dendrimer content or generation and CO2 partial pressure (ΔPCO2ΔPCO2) under atmospheric conditions. Especially, a polymeric membrane containing 50 wt.% PAMAM dendrimer (0th generation) exhibited an excellent CO2/H2 selectivity of 500 with CO2 permeability of 2.74 × 10−14 m3(STP)m/(m2 s Pa) or 3.65 × 103 barrer (1 barrer = 7.5 × 10−18 m3(STP)m/(m2 s Pa)) when a mixture gas (CO2/H2: 5/95 by vol.) was fed at 25 °C and 100 kPa with 80% relative humidity. This polymeric materials are promising for a novel CO2 separation membrane.  相似文献   

20.
刘素芹  王松  戴高鹏  鲁俊  刘科 《物理化学学报》2015,30(11):2121-2126
在二甲基甲酰胺溶液中, 通过简单的沉淀法制备了纳米Ag2CO3和碳纳米管(CNT)的复合物. 用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)和紫外-可见(UV-Vis)漫反射光谱(DRS)表征了所制备的Ag2CO3/CNT复合物, 通过在可见光下降解甲基橙(MO)检测了样品的光催化活性. 结果表明, 纳米Ag2CO3颗粒与CNT结合良好. CNT的含量为1.5% (w)的Ag2CO3/1.5% CNT复合物活性最高, 经过60 min 的降解, 甲基橙的降解率达到93%. 与纯相纳米Ag2CO3比较, CNT的加入还提高了Ag2CO3的稳定性, 经过三次循环降解, Ag2CO3/1.5% CNT复合物还能降解81%的甲基橙, 而纳米Ag2CO3只能降解59.5%的甲基橙. 其活性和稳定性提高的原因是由于CNT的高导电性, 它不仅促进了电子-空穴对的分离, 还能快速转移产生的光生电子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号