首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of benzalkonium chloride loaded microcapsules was performed by interfacial polycondensation of isocyanates. The present study was made in order to clarify parameters affecting microcapsule wall formation during the course of polymerization. The results presented here show that many interrelated parameters are involved during the microcapsule formation. Each individual component introduced in the preparation was shown to have an effect either on the morphology of the microcapsules or on the mechanical resistance. Benzalkonium chloride seemed to interact mainly in the interfacial polymer precipitation step through a salt effect, or influence the polycondensation reaction rate acting as a catalyst. A contribution of the hydroxylic functions of the surfactant in the polycondensation reaction of the isocyanate was also highlighted. Finally, the organic phase composition was found to be able to modulate the reactivity of hydroxylic functions of the surfactant, leading to very slow reactions in pure xylene. These effects were related to the characteristics of the microcapsules obtained according to different compositions of the formulation system.  相似文献   

2.
Kinetics of film formation by interfacial polycondensation   总被引:1,自引:0,他引:1  
An approximate analytical model of film formation by interfacial polycondensation is presented. The analysis requires knowledge of a minimal set of certain kinetic parameters (monomer diffusivities and reaction rate constants) and reaction conditions (monomer concentrations and thickness of the unstirred layer). The process proceeds as a succession of two or three markedly different kinetic regimes. Each regime (insipient film formation, slowdown, and diffusion-limited growth) sets a different pattern of local polymer accumulation, with important implications for the structure of the emerging film. At the incipient stage, a loose polymer film begins to emerge in a fixed narrow region inside the boundary layer, followed by gradual densification of the middle part of the film. A condition for film formation is thus formulated on the basis of our analysis. The model predicts that two different scenarios are possible, which depend on the permeability of the polymer: films with a low permeability to both monomers pass through an abrupt slowdown of film growth, whereas permeable films undergo a smooth transition between the incipient film formation and diffusion-limited regimes. The model incorporates the highly important effects of the accumulation of reactive end groups and the decrease of monomer diffusion with the polymer concentration on the kinetics of the process and film characteristics. In addition, the validity of the utilized mean-field approach is analyzed, and the analysis suggests a direct correlation between the roughness and the thickness of the film. The results are in good agreement with an earlier numerical study and the direct structural studies of polyamide membrane films.  相似文献   

3.
It was tried to form Pickering emulsion by use of paraffin wax as a phase change material (PCM) and SiC as solid powder and to apply to the preparation of the hybrid microcapsules with the interfacial polycondensation reaction. Pickering emulsion could be formed by stirring PCM and SiC in the continuous water phase. The mean diameter of PCM droplets in the (O/W) emulsion decreased with the added amount of SiC. The SiC weight adhered on the surface of PCM droplets become the maximum in the continuous phase with pH 6.8. The hybrid microcapsules with the shell made of SiC and polyurea resin film could be prepared by using Pickering emulsion. There was a critical adhesion weight of SiC, above which the hybrid microcapsules could not be formed. Thermal conductivity of hybrid microcapsules could be improved as compared with the PCM microcapsules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Colored latexes with polyurea shell were prepared by applying interfacial polycondensation reaction to the miniemulsion polymerization process. These colored latexes were composed of polystyrene core and polyurea shell, and their particle size was adjusted to <100 nm. Diisocyanate was used as a hydrophobic monomer, and the equivalent mole of diamine was used as a hydrophilic monomer for interfacial polymerization. It was important to control the rate of interfacial polycondensation reaction in order to prepare small particles. Dye preservation property of colored latex loaded with oil-soluble dye was investigated. Polyurea shell formed at the surface of latex particles could restrain the migration of dyes from the latex particles and improve the dye preservation property. The ability to prevent dye migration depended on the composition of the polyurea shell.  相似文献   

5.
界面聚合法制备复合膜   总被引:5,自引:0,他引:5  
汤蓓蓓  徐铜文  武培怡 《化学进展》2007,19(9):1428-1435
本文对近年来国内外利用界面聚合法制备超薄复合膜的研究进行了综述。阐述了界面聚合成膜反应的原理,并从反应单体种类的角度进行分类,对目前由界面聚合法制备复合膜的研究现状进行了较详细的介绍和分析;对界面聚合法制备复合膜存在的问题以及研究前景进行了展望。  相似文献   

6.
The present work describes the formation of Pegylated polyurethane and Lysine-coated polyurea nanoparticles obtained from O/W nano-emulsions via an interfacial polycondensation process in the aqueous solution/polysorbate 80/diisocyanate/medium chain triglyceride systems. The initial nano-emulsions were prepared using the phase inversion composition (PIC) method. Dynamic light scattering studies revealed the changes in the particle size occurring during the process of nanoparticle formation. Well-defined polymeric nanoparticles with a small particle diameter (below 80 nm) and low polydispersity index were obtained using a highly hydrophilic component (polyethylene glycol or lysine) and an aliphatic diisocyante monomer. FT-IR and AFM studies showed that the polymeric matrix of nanoparticles was built by copolymers derived from reaction between the diisocyanate and the hydroxyl groups of both nonionic surfactant and the highly hydrophilic component. Pegylated-polyurethane and lysine-coated polyurea nanoparticles designed in this study are promising tools for future applications in biomedical sciences.  相似文献   

7.
贾妍  刘鹏霄  皮行健  张瑛 《化学通报》2023,86(10):1164-1171
混合基质膜结合多孔填料优异的气体分离性能和聚合物材料良好的加工性能,被认为是最具有应用前景的一种气体分离膜材料。金属-有机框架材料(MOF)由于具有高比表面积和孔隙率、可调节的孔径以及可修饰的表面性能,成为制备混合基质膜的重要多孔材料。本文针对MOF基混合基质膜制备中所面临的主要挑战,聚焦于MOF和聚合物界面缺陷问题,分析了界面缺陷的产生原因及其对性能的影响,重点阐述了改善MOF填料和聚合物基质界面相容性的策略,以期为制备具有良好的界面形态和优异的气体分离性能的混合基质膜提供借鉴思路。  相似文献   

8.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (PVDF‐CTFE) membranes were prepared by solvent casting from dimethylformamide (DMF). The preparation conditions involved a systematic variation of polymer/solvent ratio and solvent evaporation temperature. The microstructural variations of the PVDF‐CTFE membranes depend on the different regions of the PVDF‐CTFE/DMF phase diagram, explained by the Flory‐Huggins theory. The effect of the polymer/solvent ratio and solvent evaporation temperature on the morphology, degree of porosity, β phase content, degree of crystallinity, mechanical, dielectric, and piezoelectric properties of the PVDF‐CTFE polymer were evaluated. In this binary system, the porous microstructure is attributed to a spinodal decomposition of the liquid‐liquid phase separation. For a given polymer/solvent ratio, 20 wt % , and higher evaporation solvent temperature, the β phase content is around 82% and the piezoelectric coefficient, d33, is ? 4 pC/N © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 761–773  相似文献   

9.
Microcapsules with chlorpyrifos cores and polyurea walls were synthesized with 2,4-tolylene diisocyanate as an oil-soluble monomer and ethylenediamine as a water-soluble monomer via an interracial polycondensation reaction. The products were characterized by means of Fourier transform infrared spectrometry, ^13C NMR spectrometry and ^31p NMR spectrometry. The morphology, the particle size and the particle size distribution, and the thermal properties were also evaluated. The prepared microcapsules exhibit clear and smooth surfaces and have a mean diameter of 28. 13 μm. These microcapsules also have a good thermal stability for long-term use, and have potential applications in minimizing the toxicity of chlorpyrifos through controlled release.  相似文献   

10.
A chemomechanical model for the interfacial concentration and density in compressible polymer solutions is formulated using variational principles. The nonlinear model with boundary conditions obtained from phase equilibrium calculations gives the coupled concentration and density profiles. The couplings between chemical and mechanical balances are identified and efficient ways to calculate the interfacial structure is identified. A specific model appropriate to high‐pressure processing of the polyolefins is developed using the modified Sanchez Lacombe equation of state. Bakker's formula for the interfacial tension is adapted to compressible polymer solutions. The structure and tension of a flat interface is characterized using the developed model and material properties of three molecular weight hydrogenated polybutadiene; the main variables of interest were the pressure, polymer molecular weight, and temperature. The relation between the pressure profile across the interface and the interfacial tension is characterized. Scaling power laws for interfacial tension and interfacial thickness as a function of pressure are obtained and contrasted with the corresponding laws observed and predicted for incompressible polymer solutions. It is found that the modified Sanchez Lacombe‐based power law prediction predictions for compressible solutions in terms of pressure quenches are similar to those from those obtained by the Flory‐Huggins incompressible model for temperature quenches. The present results provide the basis for the future study of the kinetics of pressure‐induced phase separation in compressible polymer solutions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 640–654, 2009  相似文献   

11.
In order to study the mechanism of the formation of maeroporous copolymer, the overall reaction kinetics, phase separation and gelation of the S/EGDM in the presence of inert solvents and the physical properties of the eopolymer were investigated and compared with the corresponding system of S/DVB and S/DVB/MMA. The formation of the network structure of the macroreticular polymer was studied and a model of the mechanism suggested.  相似文献   

12.
New polythioesters by interfacial polycondensation of 1,4-di(mercaptomethyl)-tetramethylbenzene with phthaloyl, isophthaloyl, and terephthaloyl chlorides were obtained. To determine the optimal conditions of interfacial polycondensation the influence of the following factors on yield and value of reduced viscosity were studied: type of organic phase, the quantitative ratio of aqueous to organic phase, concentration of hydrogen chloride acceptor, molar ratio of reagents, rate of acid chloride addition, contribution of benzyltriethylammonium chloride as a catalyst, and the temperature of the reaction. The yield of all reaction products and the reduced viscosity of polythioesters which were soluble in the mixture of phenol-tetrachloroethane were found. A thorough examination was carried out only for the polycondensation of dithiol with isophthaloyl chloride. The structure of all polythioesters obtained under the model conditions was determined by elementary analysis and infrared spectra. Initial decomposition temperature and maximum rate of decomposition temperature were defined from the curves of thermogravimetric analysis. Some mechanical and electrical properties of the polythioesters were determined. The molecular weight was not measured because of the low solubility of the obtained polythioesters.  相似文献   

13.
By interfacial polycondensation of 4,4′-dimercaptobenzophenone with oxalyl, succinyl, adipolyl, suberoyl, and sebacoyl chlorides new polythioesters were obtained. To determine the optimal conditions of interfacial polycondensation the influence of the following factors on yield and value of reduced viscosity was studied: type of organic phase, the quantitative ratio of aqueous to organic phase, concentration of hydrogen chloride acceptor, molar ratio of reagents, temperature of reaction, rate of acid chloride addition, and contribution of catalyst. A thorough examination of the polycondensation of dithiol with adipolyl and sebacoyl chlorides was carried out. The structure of all polythioesters obtained under model conditions was determined by elemental analysis and infrared spectra. Initial decomposition and intensive decomposition temperature were defined by the curves of thermogravimetric analysis. Mechanical and electrical properties of the polythioesters obtained from 4,4′-dimercaptobenzophenone and adipoyl and sebacoyl chlorides were determined. The molecular weight was not measured because of the low solubility of the polythioesters.  相似文献   

14.
Microencapsulation of active agents, for their controlled release, can be brought about by the method of interfacial polycondensation [1]. In this paper, the permeabilities of the polyurea microcapsules for encapsulated cyclohexane have been determined. It is shown that the product of the permeability and membrane thickness can be changed over at least an order of magnitude by changing the degree of crystallinity of the polymer forming the membranes.  相似文献   

15.
In this research, membrane formation with hyperbranched perfluorinated polymers (HBFP) was investigated. To create a tough membrane, HBFP was blended and crosslinked with a tougher linear polymer. Blending only or crosslinking only was not sufficient to create a tough membrane, but combining blending with crosslinking was successful. Miscibility, phase separation, and thermal and mechanical properties were evaluated for a variety of systems. By using a toughening linear polymer with lower polarity, reduced phase separation and improved mechanical properties were seen. Overall, imidazole‐containing HBFPs produced the clearest and toughest blends. These new hyperbranched ionomers and copolymers are strong candidates for future use in anhydrous proton exchange membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 961–972  相似文献   

16.
New polythioesters by interfacial polycondensation of 4,4′-di(mercaptomethyl) benzophenone with oxalyl, succinyl, adipoyl, suberoyl, and sebacoyl chlorides were obtained. To determine the optimal conditions for interfacial polycondensation the influence of the following factors on yield and value of reduced viscosity were studied: type of organic phase, the quantitative ratio of aqueous and organic phase, concentration of hydrogen chloride acceptor, molar ratio of reagents, temperature of reaction, rate of acid chloride addition, and contribution of catalyst and emulsifier. A thorough examination was carried out only for polycondensation of dithiol with adipoly and sebacoyl chlorides. The structure of all polythioesters obtained under the model conditions was determined by elementary analysis and infrared spectra. Initial decomposition and initial intensive decomposition temperature were defined from the curves of thermogravimetric analysis. Some mechanical and electrical properties of the polythioesters obtained from 4,4′-di(mercaptomethyl)benzophenone and adipoyl and sebacoyl chlorides were determined. The molecular weight was not measured because of the low solubility of the obtained polythioesters.  相似文献   

17.
The influence of relative humidity (RH) during the film preparation on the surface morphology and on the material distribution of the resulting technical polymer blend films consisting of poly (methyl methacrylate) (PMMA) and poly (vinyl butyral) (PVB) is investigated by atomic force microscopy. Both pure polymers and polymer blends with different compositions of PVB/PMMA dissolved in tetrahydrofuran (THF) were used. Polymer films prepared under dry conditions (RH < 20%) are compared with those that have the same polymer composition but were prepared under increased humidity conditions (RH > 80%). The films consisting of the pure polymers showed a nonporous surface morphology for low‐humidity preparation conditions, whereas high‐humidity preparation conditions lead to porous PVB and PMMA films, respectively. These pores are explained as the result of a breath figure formation. In the case of the polymer blend films containing both polymers, porous or phase‐separated surface structures were observed even at low‐humidity conditions. A superposition of the effects of phase separation and breath figure formation is observed in the case of polymer blend films prepared under high‐humidity conditions. Atomic force microscopy (AFM) images taken before and after the treatment with ethanol as a selective solvent for PVB indicate that PMMA is deposited on top of a PVB layer in the case of the low‐humidity preparation process whereas for high‐humidity conditions the silicon substrate is covered with a PMMA film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The historical development of our research on polycondensation that proceeds in a chain-growth polymerization manner ("chain-growth polycondensation") for well-defined condensation polymers is described. We first studied polycondensation in which change of the substituent effect induced by bond formation drove the reactivity of the polymer end group higher than that of the monomer. In this approach, well-defined aromatic polyamides, polyesters, polyethers, and poly(ether sulfone)s were obtained. The second approach was the study of the phase-transfer polymerization of a solid monomer dispersed in an organic solvent. In this type of polymerization, the solid monomer was physically unable to react with another monomer and was carried with the phase transfer catalyst into the solution phase where it reacted with an initiator and the polymer end group in the solvent in a chain polymerization manner. We also found catalyst-transfer polycondensation as a third approach to chain-growth polycondensation. In the Ni-catalyzed polycondensation of 2-bromo-5-chloromagnesiothiophenes, the Ni catalyst transferred to the polymer end group, and a coupling reaction occurred there to yield a well-defined polythiophene. This chain-growth polycondensation was applied to the synthesis of condensation polymer architectures such as block copolymers, star polymers, graft copolymers, and so on.  相似文献   

19.
Medium energy ion scattering and high-resolution transmission electron microscopy are used to investigate the depth of the interfacial reaction of Hf-silicate film. The interfacial reaction is critically affected by the film thickness and the mole fraction of HfO(2) in silicate film. The interfacial compressive strain generated at the surface of the Si substrate is dependent on the film thickness during the postannealing process in film with a thickness of approximately 4 nm. Finally, the phase separation phenomenon demonstrates critically different behaviors at different film thicknesses and stoichiometries because the diffusion of Si from interface to surface is dependent on these factors. Moreover, the oxidation by oxygen impurity in the inert ambient causes SiO(2) top formation.  相似文献   

20.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号