首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study the influence of a possible coherent component in the boson source on the two-, three- and n-particle correlation functions in a generalized core–halo-type boson-emitting source. In particular, a simple formula is presented for the strength of the n-particle correlation functions for such systems. Graph rules are obtained to evaluate the correlation functions of arbitrarily high order. The importance of an experimental determination of the 4-th and 5-th order Bose–Einstein correlation function is emphasized. Received: 18 December 1998 / Published online: 20 May 1999  相似文献   

3.
《Physics letters. [Part B]》2002,524(1-2):55-64
Bose–Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV<Q<2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model.  相似文献   

4.
B.J. Dalton 《Annals of Physics》2012,327(10):2432-2490
A phase space theory approach for treating dynamical behaviour of Bose–Einstein condensates applicable to situations such as interferometry with BEC in time-dependent double well potentials is presented. Time-dependent mode functions are used, chosen so that one, two,…highly occupied modes describe well the physics of interacting condensate bosons in time dependent potentials at well below the transition temperature. Time dependent mode annihilation, creation operators are represented by time dependent phase variables, but time independent total field annihilation, creation operators are represented by time independent field functions. Two situations are treated, one (mode theory) is where specific mode annihilation, creation operators and their related phase variables and distribution functions are dealt with, the other (field theory) is where only field creation, annihilation operators and their related field functions and distribution functionals are involved. The field theory treatment is more suitable when large boson numbers are involved. The paper focuses on the hybrid approach, where the modes are divided up between condensate (highly occupied) modes and non-condensate (sparsely occupied) modes. It is found that there are extra terms in the Ito stochastic equations both for the stochastic phases and stochastic fields, involving coupling coefficients defined via overlap integrals between mode functions and their time derivatives. For the hybrid approach both the Fokker–Planck and functional Fokker–Planck equations differ from those derived via the correspondence rules, the drift vectors are unchanged but the diffusion matrices contain additional terms involving the coupling coefficients.Results are also presented for the combined approach where all the modes are treated as one set. Here both the Fokker–Planck and functional Fokker–Planck equations are exactly the same as those derived via the correspondence rules. However, although the Ito stochastic field equations are also unchanged, the Ito equations for the stochastic phases contain an extra classical term involving the coupling coefficients.  相似文献   

5.
In this work, we try to propose in a novel way, using the Bose and Fermi quantum network approach, a framework studying condensation and evolution of a space–time network described by the Loop quantum gravity. Considering quantum network connectivity features in Loop quantum gravity, we introduce a link operator, and through extending the dynamical equation for the evolution of the quantum network posed by Ginestra Bianconi to an operator equation, we get the solution of the link operator. This solution is relevant to the Hamiltonian of the network, and then is related to the energy distribution of network nodes. Showing that tremendous energy distribution induces a huge curved space–time network may indicate space time condensation in high-energy nodes. For example, in the case of black holes, quantum energy distribution is related to the area, thus the eigenvalues of the link operator of the nodes can be related to the quantum number of the area, and the eigenvectors are just the spin network states. This reveals that the degree distribution of nodes for the space–time network is quantized, which can form space–time network condensation. The black hole is a sort of result of space–time network condensation, however there may be more extensive space–time network condensations, such as the universe singularity (big bang).  相似文献   

6.
We report on the optimized production of a Bose–Einstein condensate of cesium atoms using an optical trapping approach. Based on an improved trap loading and evaporation scheme we obtain more than 105 atoms in the condensed phase. To test the tunability of the interaction in the condensate we study the expansion of the condensate as a function of scattering length. We further excite strong oscillations of the trapped condensate by rapidly varying the interaction strength. PACS 03.75.Kk; 32.80.Pj  相似文献   

7.
The dynamics of solitons in the Bose–Einstein condensate under the effect of the fluctuation interaction of condensate atoms is studied. A system of equations of motion describing changes in the parameters of the soliton wave function is obtained using the method of the averaged Lagrangian. The minimum critical number of solitons is found, and the influence of the fluctuation interaction on the dynamics of solitons near their critical width is studied.  相似文献   

8.
We develop a method for detecting the inhomogeneity of the pion-emitting sources produced in ultra-relativistic heavy ion collisions, through event-by-event two-pion Bose–Einstein correlations. The root-mean-square of the error-inverse-weighted fluctuations between the two-pion correlation functions of single and mixed events are useful observables for the detection. By investigating the root-mean-square of the weighted fluctuations for different impact parameter regions people may hopefully determine the inhomogeneity of the particle-emitting in the coming Large Hadron Collider (LHC) heavy ion experiments.  相似文献   

9.
We have proposed a mechanical model that corresponds to the Newton equation for describing the dynamics of an oscillon, viz., a soliton-like cluster of the Bose–Einstein condensate (with atomic attraction) placed above an oscillating atomic mirror in a uniform gravitational field. The model describes the stochastic Fermi acceleration and periodic, quasi-periodic, and chaotic motion of the oscillon center, as well as hysteresis phenomena in the case of a slow variation of mirror oscillation frequency, which are in good agreement with the results obtained using the Gross–Pitaevskii equation.  相似文献   

10.
11.
Quantum mechanics equations for a system of the Bose particles are represented in the form of material field equations. A nonlinear equation for the macroscopic one-particle wave function is derived. Using the Krylov–Bogolyubov–Mitropol’skii method for equations in partial derivatives, nonlinear waves in the Bose–Einstein condensate are investigated. In the cubic approximation, dispersion relations for waves are derived and nonlinear frequency shift is calculated in the first- and third-order approximations for the interaction radius.  相似文献   

12.
The coherent and collective nature of a Bose–Einstein condensate can enhance or suppress physical processes. Bosonic stimulation enhances scattering in already occupied states which leads to matter wave amplification, and the suppression of dissipation leads to superfluidity. In this article we present several experiments where enhancement and suppression have been observed and discuss the common roots of and differences between these phenomena.  相似文献   

13.
14.
A vehicle skids whenever the friction between tyre and road is insufficient to meet the demands of the driver in accelerating, braking, or cornering. In wet weather, when the water film on the road acts as a lubricant, the friction between tyre and road may be greatly reduced. The magnitude of the friction between a tyre and a wet road depends on the physical characteristics of both the road surface and the tyre.

Recent work has shown that when well-lubricated rubber slides over a hard surface, as in the case of a tyre on a wet road, a large part of the frictional resistance may arise from energy losses in the rubber as it is deformed by projections in the hard surface and then recovers. These are the so-called hysteresis losses. Evidence suggests that if the associated practical problems can be solved very worthwhile improvements in skidding friction may be obtained by the use of tyres in which the rubber of the tread has much higher hysteresis losses than the normal tyre tread rubber.  相似文献   

15.
Optics and Spectroscopy - The possibility of formation of a Bose–Einstein condensate (BEC) of excitons in a model nonideal lattice of a molecular crystal is considered. The spectrum of...  相似文献   

16.
Following on our earlier work in this area, here we examine in some detail the physical mechanism involved in the Bose–Einstein condensation process. In particular we emphasise the significance of the zero value of the chemical potential at and below the critical temperature. The molar zero-point energy (ZPE) for an ideal gas of He4 atoms in our new analysis is estimated and found to be very close to that calculated for an ideal Fermi gas of He3 atoms under the same conditions. This gives numerical support to our theory. We also show how the theory is consistent with the presence of a density maximum in liquid He4.  相似文献   

17.
We study the finite size effects on Bose–Einstein condensation (BEC) of an ideal non-relativistic Bose gas in the three-sphere (spatial section of the Einstein universe) and in a partially finite box which is infinite in two of the spatial directions (infinite slab). Using the framework of grand-canonical statistics, we consider the number of particles, the condensate fraction and the specific heat. After obtaining asymptotic expansions for large system size, which are valid throughout the BEC regime, we describe analytically how the thermodynamic limit behaviour is approached. In particular, in the critical region of the BEC transition, we express the chemical potential and the specific heat as simple explicit functions of the temperature, highlighting the effects of finite size. These effects are seen to be different for the two different geometries. We also consider the Bose gas in a one-dimensional box, a system which does not possess BEC in the sense of a phase transition even in the infinite volume limit.  相似文献   

18.
Quasi-one-dimensional Bose–Einstein condensates (BECs) in elongated traps exhibit significant phase fluctuations even at very low temperatures. We present recent experimental results on the dynamic transformation of phase fluctuations into density modulations during time of flight and show the excellent quantitative agreement with the theoretical prediction. In addition we confirm that, under our experimental conditions, in the magnetic trap density modulations are strongly suppressed even when the phase fluctuates. We also discuss our theoretical results on control of the condensate phase by employing a time-dependent perturbation. Our results set important limitations on future applications of BECs in precision atom interferometry and atom optics, but at the same time suggest pathways to overcome these limitations. Received: 17 August 2002 / Published online: 15 January 2003 RID="*" ID="*"Corresponding author. Fax: +49-511/762-3023, E-mail: Helge.Kreutzmann@ITP.uni-hannover.de  相似文献   

19.

We study a multi-group version of the mean-field or Curie–Weiss spin model. For this model, we show how, analogously to the classical (single-group) model, the three temperature regimes are defined. Then we use the method of moments to determine for each regime how the vector of the group magnetisations behaves asymptotically. Some possible applications to social or political sciences are discussed.

  相似文献   

20.
Bunkov  Yu. M.  Konstantinov  D. 《JETP Letters》2020,112(2):95-100
JETP Letters - The experimental detection of the Bose-Einstein condensate of magnons in coupled nuclear-electron spin precession in antiferromagnets brings the prospect of its use for magnonics and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号