首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using the resistance-in-series (RIS) approach to permeate flux modeling, a general relationship between permeate flux, transmembrane pressure, cross-flow velocity, and feed kinematic viscosity was developed for the tubular ultrafiltration (UF) of synthetic oil-in-water emulsions. The fouling layer resistance, Rf, was 63% of the total membrane resistance, Rm′; however, concentration polarization was the predominant factor controlling resistance in the tubular UF system. An explicit form of the resistance index, Φ, was postulated based on the observed interactions between Φ, cross-flow velocity and feed kinematic viscosity and the RIS model was modified to further describe the interactions between permeate flux and operational parameters. The modified model adequately predicted flux–pressure data over the range of experimental variables examined in this study. Additionally, a set point operating pressure was determined as a function of cross-flow velocity and feed viscosity to achieve a balance between polarization and total membrane resistance.  相似文献   

2.
Microfiltration for separation of green algae from water   总被引:2,自引:0,他引:2  
Cross-flow microfiltration was used for separation of green algae, Chlorella sp., from freshwater. The transmembrane pressure (TMP) was adjusted at 40, 50 and 60 kPa, respectively. The cross-flow velocity was set at 0.43 m/s for laminar flow and 0.84 m/s for turbulent flow, respectively. The results showed that flux increased as TMP increased from 40 to 50 kPa. But drastic flux decline was observed when operating at TMP of 60 kPa. Raising cross-flow velocity increased the initial flux of MF under TMP of 60 kPa. Nevertheless, implementing turbulent cross-flow did not improve the drastic flux decline under the highest TMP. Preozonation increased the dissolved organic carbon, decreased algal viability and made the size of algal cells smaller. It also increased dissolved polysaccharide that derived from extracellular organic matter (EOM). Different effects of preozonation on flux behavior of MF were observed when utilizing hydrophobic and hydrophilic membrane. Generally speaking, preozonation improved performance of microfiltration by reducing cake compressibility and the biomass loading when both membranes were used. However, dissolved polysaccharide released during preozonation was adsorbed onto the hydrophobic membrane. Consequently, fouling resistance of the hydrophobic membrane became higher. These arguments were verified by classification of hydrodynamic resistances.  相似文献   

3.
This paper investigates the microfiltration of skim milk in order to separate caseins micelles from two whey proteins, α-lactalbumin (α-La) and β-lactoglobulin (β-Lg), using a modified dynamic filtration pilot (MSD) consisting in 6 ceramic 9-cm diameter membrane disks of 0.2 μm pores, rotating around a shaft inside cylindrical housing. A comparison was made with another dynamic filtration module consisting in a disk rotating near a fixed PVDF 15.5 cm diameter membrane with 0.15 μm pores. Maximum permeate fluxes were 120 L h−1 m−2 with the MSD module at 1930 rpm and at 40 °C, and 210 L h−1 m−2 at 2500 rpm and 45 °C, with the rotating disk module. Casein rejection was around 99% at high speed for both membranes. α-La transmission decreased with increasing transmembrane pressure (TMP) from 75% to 60% for ceramic membranes and from 25% to 10% for the PVDF one. β-Lg transmissions were lower, ranging from 23% to 15% for ceramic membranes and from 20% to 5% for the PVDF one. In a concentration test with the PVDF membrane at 2000 rpm, the flux decayed from 200 L h−1 m−2 at initial concentration to 80 L h−1 m−2 at VRR = 3.2 and 22.1% of the initial α-La mass was recovered in the permeate, against 8.1% for β-Lg. Permeate fluxes in the mass transfer limited regime (Jlim) of the MSD and rotating disk module operated at various speeds were well correlated by the equation Jlim = 17.13 Vav where Vav denoted the disk azimuthal velocity averaged over the membrane area. Measurements of Jlim, taken from Ref. [G. Samuelsson, P. Dejlmek, G. Tragardh, M. Paulsson, Minimizing whey protein retention in crossflow microfiltration of skim milk. Int. Dairy J. 7 (1997) 237–242] during MF of skim milk using tubular ceramic membranes at velocities from 1.5 to 8 m s−1 with permeate co-current recirculation were found to obey the same correlation.  相似文献   

4.
A combined osmotic pressure and cake filtration model for crossflow nanofiltration of natural organic matter (NOM) was developed and successfully used to determine model parameters (i.e. permeability reduction factor (η) and specific cake resistance (αcake)) for salt concentrations, NOM concentrations, and ionic strength of salt species (Na+ and Ca++). In the absence of NOM, with increasing salt concentration from 0.004 to 0.1 M, permeability reduction factor (η)) decreased from 0.99 to 0.72 and 0.94 to 0.44 for monovalent cation (Na+) and divalent cation (Ca++), respectively. This reduced membrane permeability was due to salt concentrations and salt species. In the presence of NOM, specific cake resistance tended to increase with increasing NOM concentration and ionic strength in the range of 0.85 × 1015–3.66 × 1015 m kg−1. Solutions containing divalent cation exhibited higher normalized flux decline (Jv/Jvo = 0.685–0.632) and specific cake resistance (αcake = 2.89 × 1015–6.24 × 1015 m kg−1) than those containing monovalent cation, indicating a highly compacted NOM accumulation, thus increased permeate flow resistance during NF filtration experiments. After membrane cleaning, divalent cation exhibited lower water flux recovery than monovalent cation, suggesting higher non-recoverable (Rnon-rec) resistance than monovalent cation.  相似文献   

5.
A hybrid coagulation–ultrafiltration process has been investigated to understand membrane performance. Coagulation prior to ultrafiltration is suspected to reduce fouling by decreasing cake resistance, limiting pore blockage and increasing backwash efficiency. Coagulation followed by tangential ultrafiltration should gather the beneficial effects of particle growth and cross-flow velocity. Our study aims at determining the key parameters to improve membrane performance, by describing floc behaviour during the hollow fibre ultrafiltration process. Flocs encounter a wide range of shear stresses that are reproduced through the utilization of different coagulation reactors. Performing a Jar-test enables the formation of flocs under soft conditions, whereas Taylor-Couette reactors can create the same shear stresses occurring in the hollow fibres or in the pump. Synthetic raw water was made by adding bentonite into tap water. Five organic coagulants (cationic polyelectrolytes) and ferric chloride were selected. Floc growth was thoroughly monitored in the different reactors by laser granulometry. Coagulation–ultrafiltration experiments revealed different process performance. The effect on the permeate flux depended on the coagulant used: some coagulants have no influence on permeate flux, another enables a 20% increase in permeate flux whereas another coagulant leads to a decrease of 50%. Flocs formed with ferric chloride do not resist shear stress and consequently have no influence on permeate flux. These results show the necessity to create large flocs, but the size is not sufficient to explain membrane performance. Even if flocs show a good resistance to shear stress, a high compactness (Df = 3) will lead to a dramatic decrease of permeate flux by increasing the mass transfer resistance of the cake. On the contrary, flocs less resistant to shear stress, then smaller and also more open have no effect on permeate flux. An optimum was quantified for large flocs, resistant enough to shear stress facilitating flow between aggregates.  相似文献   

6.
Quantitative analysis of various resistances that lead to flux decline during cross-flow ultrafiltration (UF) of the fermentation broth of Bacillus subtilis ATCC (American Type Culture Collection) 21332 culture was studied. Polyethersulfone membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. Prior to cross-flow UF, the broth was treated by acid precipitation (pH 4.0) and centrifugation, and the precipitate was re-dissolved in NaOH solution. Experiments were performed at a feed pH of 7.0, a feed surfactin concentration of 1.48 g L−1, and a cross-flow velocity of 0.32 m s−1 but at different transmembrane pressures (ΔP, 20–100 kPa). The resistance-in-series model was used to analyze the flux behavior, which involves the resistances of membrane itself and cake as well as those due to adsorption and solute concentration polarization. It was shown that the resistance due to solute concentration polarization and of membrane dominated under the conditions examined. The resistances due to cake formation and solute adsorption were comparable, and their sum contributed below 20% of the overall resistance.  相似文献   

7.
Electrospun polyacrylonitrile (PAN) nanofibrous scaffold was used as a mid-layer support in a new kind of high flux thin film nanofibrous composite (TFNC) membranes for nanofiltration (NF) applications. The top barrier layer was produced by interfacial polymerization of polyamides containing different ratios of piperazine and bipiperidine. The filtration performance (i.e., permeate flux and rejection) of TFNC membranes based on electrospun PAN nanofibrous scaffold was compared with those of conventional thin film composite (TFC) membranes consisting of (1) a commercial PAN ultrafiltration (UF) support with the same barrier layer coating and (2) two kinds of commercial NF membranes (i.e., NF90 and NF270 from Dow Filmtec). The nanofiltration test was carried out by using a divalent salt solution (MgSO4, 2000 ppm) and a cross-flow filtration cell. The results indicated that TFNC membranes exhibited over 2.4 times more permeate flux than TFC membranes with the same chemical compositions, while maintaining the same rejection rate (ca. 98%). In addition, the permeate flux of hand-cast TFNC membranes was about 38% higher than commercial NF270 membrane with the similar rejection rate.  相似文献   

8.
The present paper provides a model based on dimensional analysis that gives the basis for design of the cross-flow microfiltration processes. This gives the permeate flux f in terms of the pressure drop across the filtration membrane ΔP and the velocity V of cross-flow of the feed fluid in the membrane tubes. The model is compared with an extensive series of experimental results with magnesium hydroxide slurries. The model has certain similarities with previous ones and can be used for unit optimization.  相似文献   

9.
Polarisation of a retentive UF membrane has been studied for three types of solute, a colloid (silica sol), a protein (albumin) and a branched chain polymer (Dextran), with and without stirring. For unstirred conditions the data have been analysed by modified constantpressure filtration theory, which gives specific resistances, a, of the solutes consistent with their sizes and conformation. The simple Carman—Kozeny relationship approximates a for the colloid and the protein. For all three solutes a increased with pressure and concentration. Times to steady-state flux for stirred conditions ranged from 10 to 50 seconds, with longest times for the lowest concentrations and the largest solute. The amount of solute in the polarised layer was estimated from the measured cake (gel) resistances and the known specific resistances. Layer thicknesses ranged up to to ? 5 μm for the protein, ? 6μm for the Dextran and ? 20 μm for the silica sol. Slight deviations of flux—time profiles from the filtration model are explained by membrane—solute interactions, such as irreversible pore plugging and reversible pore obstruction.  相似文献   

10.
Fouling in the low-pressure membrane filtration of secondary effluent for water reuse can be severe due to the complex nature of the components in the water. Pre-filtration, coagulation and anion exchange resin were investigated as pre-treatments for reducing fouling of microfiltration (MF) and ultrafiltration (UF) membranes in the treatment of activated sludge-lagoon effluent. The key fouling components were determined using several analytical techniques to detect differences in the organic components between the feed and permeate.Pre-filtration (1.5 μm) enhanced the permeate flux for MF by removing particulates, but had little effect for UF. Marked flux improvement was obtained by coagulation pre-treatment at 5 mg L−1 Al3+ with internal membrane fouling being substantially alleviated. Anion exchange resin removed >50% of effluent organic matter but did not improve the flux or reduce irreversible membrane fouling. These results, together with detailed organic compositional analyses, showed that the very high-molecular weight organic materials (40–70 kDa) comprised of hydrophilic components such as soluble microbial products, and protein-like extracellular matter were the major cause of membrane fouling.  相似文献   

11.
This paper investigates the reversibility of membrane fouling by activated sludge in a membrane bioreactor equipped with a 0.1 μm pore ceramic membrane. The membrane was submitted to a series of tests in which the permeate flux, the transmembrane pressure (TMP) or the circulation velocity were successively varied in cycles by step increments or decreases. When the permeate flux is set below the critical flux, the TMP remains stable and fouling is reversible. On the contrary, when the critical flux is exceeded, the TMP increases and does not stabilize, as in dead-end filtration. The fouling formed is partly irreversible when the flux is lowered again. When the TMP is first increased up to 400 kPa and then decreased back at constant velocity, no hysteresis is found on the flux–TMP graph, showing that fouling is reversible in this case. Velocity cycles were performed by first lowering the velocity from 5 to 1 m/s and raising it again to 5 m/s. In this case again, the fouling induced by reducing the velocity was found to be reversible. However, when the same pressure and velocity cycle tests were performed with activated sludge collected in the aeration tank of a classical wastewater treatment plant, fouling was found to be partly irreversible, showing that the cake formed in the absence of shearing is much more cohesive. In the final part of the paper, we tested a hydrodynamic method of fouling control consisting in alternating short periods of filtration (1–4 s) and short periods of washing (1 or 2 s) at low TMP and high velocity. This method yielded to a 20% permeate flux increase with a 10% reduction in hydraulic energy consumption for classical plant activated sludge.  相似文献   

12.
In desalination, effective pretreatment is the key to reduce membrane fouling that occurs during the seawater reverse osmosis (SWRO) process. However, it is difficult to compare the flux decline after different pretreatments using a small-scale reverse osmosis filtration unit. In this study, we successfully evaluated the effect of pretreatment on SWRO in terms of molecular weight distribution (MWD) of seawater organic matter (SWOM) after 20 h of SWRO operation. Microfiltration (MF), ultrafiltration (UF), ferric chloride (FeCl3) flocculation and powdered activated carbon (PAC) adsorption, were used as pretreatment. The effluents and the retentates after each pretreatment and 20 h of SWRO operation were characterized in terms of MWD.Although the normalized flux of SWRO showed similar flux decline (J/J0 = 0.17) with/without pretreatment, SWOM concentration in the retentates after different pretreatments was different in quantity and it increased linearly with time. The slope of the SWOM increase was 0.110, 0.096, 0.077 and 0.059 after MF, FeCl3 flocculation, UF and PAC adsorption pretreatments, respectively. MW peaks for the seawater used in this study consisted of 1200 Da (biopolymers), 950 Da (fulvic acids), 650 Da (hydrolysates of humic substances), 250 Da (low MW acids) and 90 Da (low MW neutrals and amphiphilics). FeCl3 flocculation preferentially removed 1200 Da (biopolymers), while PAC adsorption mostly removed 950 Da (fulvic acids). UF and NF removed only a marginal amount of relatively large organics, while RO removed the majority of organics. The intensity of 1200, 950, 650 and 250 Da MW in the RO retentates increased with the RO operation time. The organics of MW around 1200 Da (biopolymers) had a relatively low rate of increase with time compared with those of lower MW. This suggests that the SWOM of 1200 Da MW was preferentially retained on the membrane surface.  相似文献   

13.
Microfiltration (MF) of a fermentation broth containing Escherichia coli is reported in this article. We used a ceramic membrane filter (zirconia on sintered carbon) having a nominal pore size of 0.2 μm. Our results indicate that the filtration resistance was mainly caused by the cake formed on the membrane surface. Both transmembrane pressure (TMP) and fluid sweeping velocity influenced this cake resistance. Resistances due to membrane itself and due to internal pore blockage by E. coli were less important and insensitive to both TMP and fluid sweeping velocity. Preliminary results also showed that the cell density could be significantly increased when we connected such a ceramic filter on-line with our fermentation system. In particular it was found that the gas bubbles entrained in the broth side of the filter could increase the filtration flux by as much as 80%.  相似文献   

14.
《Comptes Rendus Chimie》2007,10(9):803-812
One of the critical issues for the application of low-pressure membrane processes (microfiltration, MF or ultrafiltration, UF) as pre-treatment processes for freshwater preparation is membrane fouling due to natural organic matter (NOM). The aim of this preliminary study is to contribute to a better understanding of the fouling phenomena occurring on a regenerated cellulose UF membrane fouled with a humic acid cake deposit. The originality of this work is based on a double approach on surface analysis at both macroscopic and microscopic scales. It is presently reported that humic acid fouling is mainly governed by cake formation, which plays a major role in flux decline via the well-known model of resistances in series. We obtained that the adsorbed resistance is 2% of the total resistance while the cake resistance is 52% of the total resistance, which is higher than that of the virgin membrane. From field emission gun scanning electron microscopy (FESEM) it was found for the first time that the humic acid cake is well organized, and particularly in fractal forms. The fractal dimension (FD) of the cake is determined as 2.52, which is in good agreement with the theoretical fractal dimension of particle–cluster aggregation underlying diffusion-limited aggregation (FD = 2.51). This new microscopic fouling index decreases with the presence of cake and can be correlated with the decrease of the hydraulic permeability. The classical silt density index (SDI) and the new modified fouling index (denoted MFI-UF) were obtained and also proved the presence of the cake. To complete this approach transmembrane streaming potential (denoted SP) measurements were conducted with a new homemade apparatus developed in our lab and presented for the first time in the present article, helped us to observe also a penetration of low molecular fractions of humic acid inside the membrane. Indeed the displacement of the isoelectric point (iep) of the membrane from 2.3 to 1.5 for the virgin and fouled membranes, respectively, permitted to illustrate this penetration. This newly designed SP apparatus is a semi-automatic tool assisted by a software denoted as proFluid 1.2. Furthermore, preliminary experiments with seawater were realized in order to estimate the influence of seawater filtration on the hydraulic permeability and SP parameters for the RC 100-kDa membrane.  相似文献   

15.
Chemical coagulation has been widely used as a method to mitigate membrane fouling in MF/UF membranes used for drinking water treatment. Optimization of coagulation as pre-treatment of membrane processes has not been achieved yet: the optimum condition of coagulation for conventional treatment systems is not necessarily applicable to membrane-based treatment systems. This study investigated (physically) irreversible membrane fouling in an MF membrane used with pre-coagulation by aluminum salt. In a series of bench-scale filtration tests, feed water containing commercially available humic acid or organic matter isolated from surface water was coagulated with polyaluminum chloride (PACl) under various conditions and subsequently filtered with an MF membrane with the nominal pore size of 0.1 μm. It was found that coagulation conditions had great impacts on the degree of physically irreversible fouling. Acidic conditions improved the quality of treated water but generally caused greater physically irreversible fouling than did neutral or alkaline conditions. Also, dosage of coagulant was found to be influential on the degree of membrane fouling: high dosage of coagulant frequently caused more severe irreversible fouling. Sizes of flocs seemed to become small under acidic conditions in this study, which was indicated by high concentrations of aluminum in the permeate under acidic conditions. It is thought that small flocs produced under acidic conditions could migrate into micropores of the membrane and caused physically irreversible fouling by plugging or adsorption. These findings obtained in the bench-scale tests were verified in a long-term pilot-scale test.  相似文献   

16.
The main problem in treating oil/water emulsion from car wash waste-water by ultrafiltration (UF) is fouling caused by oil adsorption on the membrane surface and internal pore walls. This study demonstrates that the addition of bentonite clay can reduce the adsorption layer on cellulose acetate UF membrane, resulting in a reduction of total membrane resistance (Rt). Experiments were conducted to identify and describe three possible mechanisms: (i) bulk oil emulsion concentration reduction; (ii) particle aggregation and (iii) detachment of the adsorbed gel layer by shear force. Adsorption of oil emulsion by bentonite can lead to a significant reduction of bulk oil emulsion concentration, one of the major causes of flux enhancement. Results show that contact of oil emulsion with bentonite forms larger particles resulting in flux increment. An optimum particle size of 37 μm, corresponds with a bentonite concentration of 300 mg/l and provided the highest flux. Beyond this limiting concentration, flux improvement gradually declined, possibly due to the formation of packed cake of particles on the membrane surface. The presence of bentonite in the oil emulsion promotes high shear stress which acts against the gel layer. This high shear stress, caused by bentonite particles and cross-flow velocity, reverses the adsorbed gel layer to the bulk of the liquid phase.  相似文献   

17.
18.
A membrane system only has a limited operational lifetime, whereby it becomes so severely fouled that continued operation must be stopped. In the cross-flow configuration of membrane filtration of wastewater, both increased cross-flow velocities and decreased operational transmembrane pressures can be used to decrease membrane fouling and extend the life cycle of the membrane separation process. The study found that an optimised usage of two de-clogging techniques, with a 1 h production period followed by a 1 min relaxation period and then a 1 min high cross-flow rate period, resulted in a net productivity increase of 14.8%.

The study involved a detailed investigation into the utilization of two automated cleaning techniques to reduce fouling problems encountered when cross-flow membrane systems are operated with high permeate flux rates. The two cleaning techniques studied were periodic membrane relaxation and a periodic high rate cross-flow. During both the relaxation and high rate cross-flow periods, permeate production was stopped. This results in an operational loss in productivity. When each cleaning technique was operated individually, there was a net productivity decrease of 0.7%, due to the 3.2% operational loss due to cleaning technique being implemented.

The system was developed using a Programmable Logic Controller (PLC) and a Supervisory Control and Data Acquisition (SCADA) system to accurately control and monitor the process.  相似文献   


19.
Controlling ultrafiltration (UF) and microfiltration (MF) membrane fluxes at or around a region where fouling is minimal can provide an interesting and economic operating regime. Selectivity may be enhanced and cleaning may be easier. For a given flux it is sometimes possible to filter a product suspension at the same trans-membrane pressure (TMP) as for pure water (PWP), but this can require a lot of energy input to maintain cross-flow or high shear in other ways if high fluxes are required. The critical flux is the flux above which one starts to observe fouling. By operating at lower cross-flow velocities and just above the critical flux, and thus, with lower TMPs, periodic cleaning can be effected by temporarily stopping permeation. A change in feed rate demands a change in flux which is obtained by temporarily increasing energy inputs. Controlled flux improves macromolecular fractionation. As flux increases the rejection of high molecular weight materials decreases whilst that of lower molecular weight materials decreases. This paper discusses the causes of fouling and the use controlled flux operation to mitigate its effects.  相似文献   

20.
Membrane fouling and subsequent permeate flux decline are inevitably associated with pressure-driven membrane processes. Despite the myriad of studies on membrane fouling and related phenomena--concentration polarization, cake formation and pore plugging--the fundamental mechanisms and processes involved are still not fully understood. A key to breakthroughs in understanding of fouling phenomena is the development of novel, non-invasive, in situ quantification of physico-chemical processes occurring during membrane filtration. State-of-the-art in situ monitoring techniques for concentration polarization, cake formation and fouling phenomena in pressure-driven membrane filtration are critically reviewed in this paper. The review addresses the physical principles and applications of the techniques as well as their strengths and deficiencies. Emphasis is given to techniques relevant to fouling phenomena where particles and solutes accumulate on the membrane surface such that pore plugging is negligible. The relevance of the techniques to specific processes and mechanisms involved in membrane fouling is also elaborated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号