首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new dark energy model, named “agegraphic dark energy”, has been proposed recently, based on the so-called Károlyházy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.  相似文献   

2.
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.  相似文献   

3.
We investigate the influence of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain the general Layser–Irvine equation in the presence of interactions, and find how, in that case, the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions on the magnitude and significance of this coupling could be established.  相似文献   

4.
We investigate the modified Chaplygin gas (MCG) with interaction between holographic dark energy proposed by Li and dark matter. In this model, evolution of the universe is described in detail, which is from deceleration to acceleration. Specifically, the evolutions of related cosmological quantities such as density parameter, the equation of state of holographic dark energy, deceleration parameter and transition redshift are discussed. Moreover, we also give their present values which are consistent with the lately observations. Furthermore, the results given by us show such a model can accommodate a transition of the dark energy from a normal state wx 〉 -1 to ωx 〈 -1 phantom regimes.  相似文献   

5.
We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations; however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density.  相似文献   

6.
We present a generalized version of holographic dark energy arguing that it must be considered in the maximally subspace of a cosmological model. In the context of brane cosmology it leads to a bulk holographic dark energy which transfers its holographic nature to the effective 4D dark energy. As an application we use a single-brane model and we show that in the low energy limit the behavior of the effective holographic dark energy coincides with that predicted by conventional 4D calculations. However, a finite bulk can lead to radically different results.  相似文献   

7.
Introducing a new infrared cut-off for the holographic dark-energy, we study the correspondence between the quintessence, tachyon, K-essence and dilaton energy density with this holographic dark energy density in the flat FRW universe. This correspondence allows to reconstruct the potentials and the dynamics for the scalar fields models, which describe accelerated expansion.  相似文献   

8.
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at late time, just as other components of the cosmic fluid become decoupled as the universe expands, interestingly, the dark matter may actually become coupled to the dark energy at late time. We shall call such a phenomenon incoupling. We use the latest type Ia supernovae data from the SCP team, baryon acoustics oscillation data from SDSS and 2dF surveys, and the position of the first peak of the CMB angular power spectrum to constrain the model. We find that the interaction term which is proportional to the first power product of the dark energy and dark matter densities gives an excellent fit to the current data.  相似文献   

9.
We investigate canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, in the framework of holographic dark energy. We classify them and we discuss their cosmological implications. In particular, we examine the present value of the dark energy equation-of-state parameter and the crossing through the phantom divide, and we extract the conditions for a future cosmological singularity. The combined scenarios are in agreement with observations and reveal interesting cosmological behaviors.  相似文献   

10.
In the holographic Ricci dark energy (RDE) model, the parameter α plays an important role in determining the evolutionary behavior of the dark energy. When α<1/2, the RDE will exhibit a quintom feature, i.e., the equation of state of dark energy will evolve across the cosmological constant boundary w=−1. Observations show that the parameter α is indeed smaller than 1/2, so the late-time evolution of RDE will be really like a phantom energy. Therefore, it seems that the big rip is inevitable in this model. On the other hand, the big rip is actually inconsistent with the theoretical framework of the holographic model of dark energy. To avoid the big rip, we appeal to the extra dimension physics. In this Letter, we investigate the cosmological evolution of the RDE in the braneworld cosmology. It is of interest to find that for the far future evolution of RDE in a Randall–Sundrum braneworld, there is an attractor solution where the steady state (de Sitter) finale occurs, in stead of the big rip.  相似文献   

11.
Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches w→−1w1 asymptotically, providing a mechanism to generate the present acceleration of the universe.  相似文献   

12.
It is shown that cosmological equations for homogeneous isotropic models deduced in the framework of the Poincaré gauge theory of gravity by certain restrictions on indefinite parameters of gravitational Lagrangian take at asymptotics the same form as cosmological equations of general relativity theory for ΛCDM-model. Terms related to dark matter and dark energy in cosmological equations of standard theory for ΛCDM-model are connected in considered theory with the change of gravitational interaction provoked by spacetime torsion.  相似文献   

13.
We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from ωD>−1ωD>1 to ωD<−1ωD<1.  相似文献   

14.
The observations of SNIa suggest that we live in the acceleration epoch when the densities of the cosmological constant term and matter are almost equal. This leads to the cosmic coincidence conundrum. As the explanation for this problem we propose the FRW model with dark matter and dark energy which interact each other exchanging energy. We show that the cubic correction to the Hubble law, measured by distant supernovae type Ia, probes this interaction. We demonstrate that influences between nonrelativistic matter and vacuum sectors are controlled by third and higher derivatives of the scale factor. As an example we consider flat decaying Λ(t)Λ(t) FRW cosmologies. We point out the possibility of measure of the energy transfer by the cubic and higher corrections to Hubble's law. The statistical analysis of SNIa data is used as an evidence of energy transfer. We find that there were the transfer from the dark energy sector to the dark matter one without any assumption about physics governing this process. We confront this hypothesis about the transfer with SNIa observations and find that the transfer the phantom and matter sector is admissible for Ωm,0=0.27Ωm,0=0.27. We also demonstrate that it is possible to differentiate between the energy transfer model and the variable coefficient equation of state model.  相似文献   

15.
By considering the logarithmic correction to the energy density, we study the behavior of Hubble parameter in the holographic dark energy model. We assume that the universe is dominated by interacting dark energy and matter and the accelerated expansion of the universe, which may be occurred in the early universe or late time, is studied.  相似文献   

16.
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level.  相似文献   

17.
Derya G Deveci  Ekrem Aydiner 《中国物理 B》2017,26(10):109501-109501
In this study, we deal with the holographic model of interacting dark components of dark energy and dark matter quadratic case of the equation of state parameter(Eo S). The effective equations of states for the interacting holographic energy density are derived and the results are analyzed and compared with the solution of the linear form in the literature.The result of our work shows that the value of interaction term between dark components affects the fixed points at far future in the DE-dominated universe in the case of quadratic Eo S parameter; it is a different result from the linear case in the theoretical results in the literature, and as the Quintom scenario the equations of state had coincidence at the cosmological constant boundary of -1 from above to below.  相似文献   

18.
19.
In this article we consider holographic dark energy model with interaction and space curvature. We calculate cosmic scale factor by using the time-dependent dark energy density. Then we obtain phenomenological interaction between holographic dark energy and matter.  相似文献   

20.
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号