首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用新型薄片状MFI沸石晶体作为晶种,通过无凝胶蒸汽辅助晶化法(gel-less steam-assisted crystallization,GLSAC)在烧结氧化硅多孔载体上制备了致密平整、b轴取向的MFI沸石膜。考察了GLSAC中模板剂浓度、釜底水量、生长温度及时间对MFI沸石膜的影响。扫描电子显微镜和X射线衍射结果显示,适量的模板剂和釡底水量能抑制晶种的面外生长。成功制备了厚度750 nm、致密平整的MFI沸石膜。制备的对丁烷异构体气体分离测试表明,25℃时,等物质的量的丁烷异构体的分离因子(SFA/B)可达36,对正丁烷的渗透速率为1.5×10-7mol·m-2·s-1·Pa-1。  相似文献   

2.
MFI membrane with high permeance was successfully synthesized on the macroporous (pore size of 3–4 μm) α-Al2O3 tubular support with a novel modified secondary growth method. Before the crystallization, the seeded support was wrapped with Teflon tape in order to focalize the growth of crystals in the region of seed layer. The as-synthesized membrane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and single-gas permeation testing. The results indicated that the as-synthesized membrane had a thickness of 6–8 μm similar to the thickness of the seed layer and exhibited high gas permeance. At room temperature, the permeance of H2 and the ideal separation factor of H2/SF6 reached 1.64 × 10−6 mol m−2 s−1 Pa−1 and 71, respectively. The permeance of single-gas increased with the increasing of temperature. The ideal separation factors of H2/i-C4H10 and H2/SF6 decreased with the increasing of temperature from 298 to 473 K. At 473 K, the ideal separation factors of H2/i-C4H10 and H2/SF6 were 12.16 and 11.08, which were still higher than their Knudsen ratios of 5.39 and 8.54, respectively.  相似文献   

3.
Gas permeation tests using nitrogen, oxygen, hydrogen, helium and carbon dioxide were performed to assess how membrane modification procedures affect the separating layer morphology of thin-film composite reverse osmosis membranes. Gas selectivity data provided evidence for the presence of nanoscale separating layer defects in dry samples of six commercial membrane types. These defects were eliminated when the membrane surface was coated with a polyether–polyamide block copolymer (PEBAX 1657), as indicated by a 25-fold decrease in gas permeance and at least a 2-fold increase in most selectivity values. Treatment with n-butanol followed by drying reduced water flux and gas flux by 30% and 75%, respectively, suggesting that using n-butanol as a solvent for applying coatings negatively affects membrane performance. The results of this study demonstrate that gas permeation measurements can be used to detect morphological features that impact gas and water membrane flux.  相似文献   

4.
利用乙二胺-水蒸汽进行气相转化(VPT)制备超薄、取向MFI沸石膜,通过将MFI纳米片沉积层转化为致密的沸石膜,实现了膜厚度的有效控制。扫描电子显微镜和X射线衍射表明,制备的沸石膜膜厚度约为280 nm,具有高度b轴取向的致密结构。丁烷异构体双组分分离测试结果表明,在333 K下,等物质的量的正丁烷/异丁烷混合物的正丁烷渗透速率和分离因子分别为1.5×10-7 mol·m-2·s-1·Pa-1和14.8。Na2SiO3作为低聚硅源在MFI沸石纳米片二次生长过程中能够提供硅源和碱度,通过在胺类蒸汽中实现MFI沸石纳米片间的融合生长,进一步提高了膜的取向度和致密性。  相似文献   

5.
利用乙二胺-水蒸汽进行气相转化(VPT)制备超薄、取向MFI沸石膜,通过将MFI纳米片沉积层转化为致密的沸石膜,实现了膜厚度的有效控制。扫描电子显微镜和X射线衍射表明,制备的沸石膜膜厚度约为280 nm,具有高度b轴取向的致密结构。丁烷异构体双组分分离测试结果表明,在333 K下,等物质的量的正丁烷/异丁烷混合物的正丁烷渗透速率和分离因子分别为1.5×10-7 mol·m-2·s-1·Pa-1和14.8。Na2SiO3作为低聚硅源在MFI沸石纳米片二次生长过程中能够提供硅源和碱度,通过在胺类蒸汽中实现MFI沸石纳米片间的融合生长,进一步提高了膜的取向度和致密性。  相似文献   

6.
Boroaluminosilicate with MFI zeotype (henceforth B-ZSM-5) was synthesized both via the direct synthesis where ZSM-5 was employed as crystal seed and the templating method by using TPABr as the structure-directing agent (SDA). Characterization based on its structure, bonding, surface acidity, and morphology was performed by powder X-ray diffraction (XRD), 11B MAS NMR spectrometry, FT-IR spectrometry, pyridine-chemisorption IR spectrometry, and scanning electron microscopy (SEM). The composition of the prepared zeolites was determined by ICP-AES; the zeolite framework stability was investigated by steam treatment. The differences in the physicochemical properties of B-ZSM-5 prepared by the two methods were compared and discussed. In the direct synthesis, increasing initial boron-substitution ratio concomitantly brings about increasing difficulty to prepare pure B-ZSM-5 and, MFI-type borosilicate (free of aluminum) cannot be synthesized; the highest SiO2/Al2O3 ratio=70.64 is received. B-ZSM-5 prepared by the templating method shows remarkable hydrothermal stability than its counterpart prepared by the direct synthesis.  相似文献   

7.
Polycrystalline randomly oriented defect free zeolite layers on porous α-Al2O3 supports are prepared with a thickness of less than 5 μm by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite poze, the flux of the weakly adsorbing molecule is suppressed by the sorption and the mobility of the strongly adsorbing molecule resulting in pore-blocking effects. The separation of these mixtures is mainly based on the sorption and completely different from the permselectivity. At low loadings of the strongly adsorbing molecules the separation is based on the sorption and the diffusion and is the same as the permselectivity. Separation factors for the isomers of butane (n-butane/isobutane) and hexane (hexane/2,2-dimethylbutane) are respectively high (10) and very high (> 2000) at 200°C. These high separation factors are a strong evidence that the membrane shows selectivity by size-exclusion and that transport in pores larger than the zeolite MFI pores (possible defects, etc) can be neglected.  相似文献   

8.
The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. These zeolites are good candidates for catalytic membranes. The Sil-1, TS-1 and VS-1 membranes were grown on pre-seeded porous stainless steel support using hydrothermal synthesis method. The effects of silica and metal (i.e. Ti and V) contents, template concentration and temperature on the zeolite membrane growth and morphology were investigated. The addition of Ti and V metal ions inhibits the zeolite growth and, thus, restricting the amount of metals (i.e. Ti and V) that can be effectively incorporated into the membrane without compromising its separation performance. Optimum Si and TPAOH concentrations were identified for the synthesis of well-intergrown zeolite membranes. An increase in the synthesis temperature can result in a change in film crystallographic orientation and the appearance of imperfections in the form of imbedded zeolite crystals. Single gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. The results indicate that the gas transport through Sil-1 and VS-1 membranes is predominantly through the zeolite pores and that the presence of vanadium in VS-1 has significant influence on the permeance of adsorbed gases (e.g. hydrocarbons). Laminar flow is important for the TS-1 membrane that exhibited microscopic cracks.  相似文献   

9.
一种气相合成Silicalite-1沸石膜的新方法   总被引:3,自引:0,他引:3  
由于在分离和催化领域的潜在应用前景 ,沸石膜近年来受到人们的广泛重视 .制备沸石膜的方法很多 ,如原位水热合成、微波合成、电金属沉积、嵌入法等等 .90年代以来 ,由于可减少昂贵的模板剂用量 ,以及能在不同载体上合成沸石膜等优点 ,蒸汽相合成法 (VPT)受到关注[1 3] .通常采用浸渍方法或正硅酸乙酯 (TEOS)的水解在载体上形成一层致密的无定形凝胶作为引入的硅源 ,随即在有机模板剂和水的蒸汽相中转晶得到沸石膜 .自 1 992年Dong等[1 ] 首先采用VPT方法合成ZSM 5和ZSM 35沸石膜以来 ,已经成功制备了多种结构类型的沸…  相似文献   

10.
Cracks are frequently formed in α-alumina supported MFI membranes during calcination. To better understand crack formation, in situ powder diffraction data were collected during calcination of a type of MFI membrane (ca. 1800 nm thick) which is known to crack reproducibly. In addition, data for MFI powder and a blank support were also collected. Both a synchrotron radiation facility and an in-house instrument were used. The unit cell parameters were determined with the Rietveld method, and the strain in the direction perpendicular to the film surface was calculated for the film as well as for the support. The microstrain in the support was also estimated. Based on the results obtained here, a model for crack formation in this type of MFI membrane was proposed. The lack of cracks in other types of MFI membranes (ca. 500 nm) prepared in our laboratory is also explained by the model. In thicker MFI films, the crystals are well intergrown. During heating, the MFI crystals contract and the α-alumina support expands. Consequently, a thermal stress develops in the composite which eventually leads to formation of cracks in the film and structural defects in the support. In thinner films, the crystals are less well intergrown and the thermal expansion mismatch leads to opening of grain boundaries rather than cracks.  相似文献   

11.
We have modeled permeation through anisotropic zeolite membranes with nanoscopic defects that create shortcuts perpendicular to the transmembrane direction (x). We have found that the dimensionless ratio Dy/(kdΔy) can be used to estimate whether the shortcuts contribute significantly to the overall flux. Here Dy is the diffusion coefficient for motion in the plane of the membrane, kd is the rate of desorbing into defect voids, and Δy is the spacing between adjacent defects. For values of Dy/(kdΔy)⪢1, we find that shortcuts increase the flux by significant amounts. The magnitude of the flux is increased as the imperfection spacing Δy is decreased. For small values of Δy, permeation through shortcuts becomes sorption-limited so that decreasing Δy further does not increase the flux through a single shortcut. However, as Δy is decreased, the concentration of shortcuts increases, thereby increasing the total contribution of the shortcuts to the flux. We have found regimes where increasing Δy or decreasing Dy decreases the overall flux, showing that permeation can be diffusion-limited by motion perpendicular to the transmembrane direction.  相似文献   

12.
The effects of humidity on gas permeation were studied for five SAPO-34 membranes with different fractions of permeation through non-SAPO pores. Membranes with high CO2/CH4 separation selectivities (>20) were stable in humidified gases, but degradation was seen for some membranes after months of exposure to the laboratory atmosphere. Once the membranes started to degrade, the rate of degradation appeared to accelerate. The degradation created non-SAPO pores that were larger than the SAPO-34 pores, as indicated by i-C4H10 permeance, CO2/CH4 selectivity, and CO2 flux dependence on pressure. The effect of humidity on gas permeance correlated with these indicators of non-SAPO pores. Adsorbed water appeared to completely block the SAPO pores, but permeation through non-SAPO pores increased with humidity. Therefore, water adsorption can be used to determine membrane quality and the fraction of transport through non-SAPO pores.  相似文献   

13.
In this present study, polyethersulfone hollow fiber membrane was used to recover sulfur hexafluoride (SF6) from gas‐insulated switchgear (GIS). SF6, N2 pure gas and mixed gas (12.5 vol.% of SF6) experiment was initiated to observe permeation behavior according to temperature and pressure difference and retentate flow rate. Scanning electron microscopy was used to investigate the morphological characteristics and the structure of asymmetric hollow fibers. The permeation rates of SF6 and N2 were measured by the variable pressure method. As a result, permeance of N2 was 9.5–16.3 GPU, and selectivity of N2/SF6 was 10.5–13.3. Moreover, the concentration of SF6 in the retentate stream reached to 99.2% by the control of the operating condition. Based on the experimental results, tree‐stage membrane process was designed using simulation program. As a result, demanded membrane area reduced about 74% according to operating condition difference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The influence of water vapor on silica membrane with pore size of 4 ? has been investigated in terms of adsorption properties and percolation effect at 50 and 90 oC. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O. The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H2O molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H2O molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H2O molecules on the silica surface block the hopping of helium molecules.  相似文献   

15.
SF6 plasma treatment using an RF discharge was carried out for the surface fluorination of polytrimethylsilylpropyne (PTMSP) and polyvinyltrimethylsilane (PVTMS) films. Gas permeation of the fluorinated and untreated films for O2, N2, He, H2, CH4 and CO2 gases has been measured. Plasma fluorination increases the ideal selectivities of the PTMSP films decreasing their permeances for all the gases measured, and does not affect the permeances and selectivities of the PVTMS films. The composition and chemical structure of the fluorinated polymer surface were investigated using X-ray photoelectron spectroscopy (XPS) and 19F nuclear magnetic resonance (NMR) spectroscopy. Within the range of the treatment parameters studied, permselectivity and surface composition of the fluorinated PTMSP films depend slightly on the treatment time and the density of the fluorine atom flux on the modified surface. The trimethylsilyl substituents are detached and carbon atoms are partially fluorinated during modification. The structure of the fluorinated layer contains crosslinks and unsaturated bonds.  相似文献   

16.
采用二次生长法在多孔α-Al2O3载体上制备MFI型(ZSM-5和silicate-1)分子筛膜;通过XRD和SEM检测,证明所合成的分子筛膜为致密、交联和无取向的MFI型分子筛膜,厚度为5 μm;单组分气体渗透实验检测中,所制备样品膜的N2渗透量均小于10-11 mol/(m2·s·Pa),可认为其无缺陷;同时,考察了样品分子筛膜对H2S/CH4混合气的分离效果,在渗透压分别为0.3和0.5 MPa时,silicate-1分子筛膜的H2S/CH4的分离因子分别为1.99和4.44,而ZSM-5分子筛膜的CH4/H2S的分离因子分别为6.71和12.85。  相似文献   

17.
A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C2 selectivity up to 40–70% was achieved, albeit that conversion rate were low, typically 0.5–3.5% at 800–900°C with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/γ-Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm2 min oxygen permeation flux were achieved under steady state at 850°C. Methane conversion and oxygen permeation flux increased with increasing temperature. No fracture of the membrane reactor was observed during syngas production. However, H2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875°C for more than 500 h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm2 min.  相似文献   

18.
Zeolite ZSM-5 membranes with high n-butane:isobutane selectivities, e.g., 322 at 185°C, are obtained by a selective deposition of coke into non-zeolitic pores. The zeolite membranes are prepared by in situ crystallization on either bare porous α-Al2O3 support disks or disks that are pretreated to include a diffusion barrier. The post-synthetic coking treatment is accomplished by impregnating these membranes with liquid 1,3,5-triisopropylbenzene (TIPB) for 24 h at room temperature and then calcining them in air at 500°C for 2 h. Calcination at 500°C for up to 30 h does not destroy the high n-butane:isobutane selectivity. Thermogravimetric analysis (TGA) experiments on two model pore systems ZSM-5 (5.5 Å) and Vycor glass (40–50 Å) suggest that micro-defects are selectively eliminated by the TIPB coking treatment while the intracrystalline pore space of the ZSM-5 is not affected. The elimination of non-zeolitic pores results in a large increase of n-butane:isobutane pure gas flux ratio (45 vs. 320 at 185°C) accompanied by a fourfold reduction of the n-butane flux. The permeation experiments reveal that the n-butane flux increases nonlinearly with the partial pressure in the feed while the n-butane:isobutane pure gas flux ratio remains relatively unchanged.  相似文献   

19.
A microporous-mesoporous material composed of MCM-41 and MFI was produced by a two-step synthetic process. The solid, called “MMM-1,” was characterized by X-ray diffraction (XRD), N2 physisorption, and transmission electron microscopy (TEM). At early stages of crystallization at 170°C, MCM-41 was formed exclusively, while at heating times longer than 96h MFI was formed. At intermediate times, MMM-1 was formed with varying amounts of MFI depending on the crystallization time. XRD revealed that the material could be severely oriented by sample preparation, which was consistent with an unusual ribbon-like morphology observed in TEM. This morphology was not seen for either pure MCM-41 or MFI. The N2 physisorption isotherm for MMM-1 showed two distinct regions of capillary condensation, with H2 hysteresis. Synthesis and subsequent use of Al-MMM-1 in the isomerization of m-xylene and comparison to Al-MCM-41 and Al-MFI showed that although the latter material had a higher total conversion, Al-MMM-1 had a higher selectivity for p-xylene. Al-MMM-1 had a much higher selectivity and conversion than Al-MCM-41, which makes it promising for use in future catalytic applications.  相似文献   

20.
The diffusion behavior of C4–C10 n-alkanes in silicalite-1 has been investigated by using the Zero Length Column method. The diffusivities derived from measurements at different purge rates with different purge gases confirming intracrystalline diffusion control. Data are compared with results reported in the literature for MFI zeolites. The diffusivities were found to be consistent and agree well with data previous obtained by ZLC. However, these data showed a remarkable disagreement with other reported techniques (PFG-NMR, QENS and Permeation). The eventual influence of carbon dioxide (CO2) adsorption on diffusion properties of n-alkanes in silicalite was also investigated. For this purpose, a series of experiments was performed involving hydrocarbons mixed with CO2. Data were obtained at 303 K and flow rates between 20 and 80 mL/min. The presence of CO2 does not seem to influence the intracrystalline transport rate of the investigated light hydrocarbons (n-C4 and n-C6). On the other hand, the situation for n-C8 and n-C10 is more complex. The diffusivity values are higher compared to the previously reported values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号