首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermogravimetry was applied to determine the surface hydroxyls coverage in the mesostructured cellular foams (MCFs) calcined at different temperatures and then rehydroxylated by contacting with water vapor or liquid. The TG measurements were performed by heating MCFs in air stream using a three-step temperature program: (i) at rate of 5 °C min−1 from 25 to 200 °C; (ii) held at 200 °C for 30 min; and (iii) heating at rate of 10 °C min−1 up to 1100 °C. The hydroxyls content was calculated from weight loss during third step. The hydroxyls density appeared to depend strongly on the calcination temperature and the subsequent contact with water vapor. When MCFs were exposed for a short period (ca. 1 min) to moist air the hydroxyls content increased rapidly, more in the samples calcined at 300 °C than 500 °C, to attain surface densities of 4.75 and 1.6 OH nm−2, respectively. The 2-h contact with water vapor resulted in slower further increase of hydroxyls densities, to values of 5.45 and 2.9 OH nm−2, for samples calcined at 300 and 500 °C, but longer contacts had no significant effect. A similar trend was also observed when sample was treated with liquid water.  相似文献   

2.
Two kinds of polypropylene capillary membranes were used in the membrane distillation (MD). These membranes exhibited a similar morphology, but one of them has an additional low porosity layer on the internal surface of capillaries. The changes of membrane performance during MD process of tap water were investigated. The presence of low porosity layer (thickness below 1 μm) caused that the air permeability was reduced from 1.365 to 0.863 dm3/m2 s kPa, whereas the MD permeate flux was decreased only by 15%. A significantly larger decline of the flux was caused by CaCO3 deposit formed during distillation of tap water. This deposit was removed every 30–70 h by rinsing the modules with a 2–5 wt.% HCl. Unfortunately, a repetition of this operation several times resulted in a gradual decline of the maximum permeate flux (distilled water as a feed). However, the module efficiency with the membranes covered by a surface layer of low porosity was found to decreases twice as slowly. The investigations revealed that a low surface porosity does not limit the possibility of surface wetting of polypropylene membranes, but hindered the scale formation inside the pores.  相似文献   

3.
Fouling is the most critical problem associated with membrane separations in liquid media. But it is difficult to control the inevitable membrane fouling because of its invisibility, especially on the inside surface of hollow fiber membranes. This study describes the extension of ultrasonic time-domain reflectometry (UTDR) for the real-time measurement of particle deposition in a single hollow fiber membrane. A transducer with a frequency of 10 MHz and polyethersulfone hollow fiber membranes with 0.8 mm inside diameter (ID) and 1.2 mm outside diameter (OD) were used in this study. The fouling experiments were carried out with 1.8 g/L kaolin suspension at flow rates 16.7 and 10.0 cm/s. The results show that UTDR technique is able to distinguish and recognize the acoustic response signals generated from the interfaces water/upper outside surface of the hollow fiber, lumen upside surface/water, water/lumen underside surface and lower outside surface/water in the single hollow fiber membrane module in pure water phase. The systemic changes of acoustic responses from the inside surfaces of the hollow fiber in the time- and amplitude-domain with operation time during the fouling experiments were detected by UTDR. It is associated with the deposition and formation of the kaolin layer on the inside surfaces. Further, the acoustic measurement indicates that the deposited fouling layer is denser on the lumen underside surface of the hollow fiber than that on the lumen upside surface as a result of weight. Moreover, it is found that the fouling layer grows faster on the inside surface of the hollow fiber at a flow rate of 10.0 cm/s than that at 16.7 cm/s due to the lower shear stress. The fouling layer formed is thicker at a flow rate of 10.0 cm/s than that at 16.7 cm/s. The flux decline data and SEM analysis corroborate the ultrasonic measurement. Overall, this study confirms that UTDR measurement will provide not only a new protocol for the observation of hollow fiber membrane fouling and cleaning, but also a quantitative approach to the optimization of the membrane bioreactor system.  相似文献   

4.
Edible bilayer membrane composed of agar (AG) or cassava starch (CAS) as a cohesive structural layer and ethanol-cast shellac layer as a moisture barrier are investigated for their potential use in food preservation as bio-packaging film, membrane or coating. Bilayer membranes containing non-plasticized shellac exhibit low water vapor permeability (WVP), from 0.89 to 1.03 × 10−11 g m−1 s−1 Pa−1. A high value of contact angle (≈92°) and a low liquid water adsorption rate (26 × 10−3 μL s−1) indicate that these barrier layers have a quite hydrophobic surface. However, the rigid and brittle characteristics of shellac induce a lack of integrity for this layer. It tends to be cracked and scaled off. The incorporation of PEG 200 (plasticizer) into shellac improves the flexibility that prevents the defects in structure and reinforces the adhesion between the shellac and the cohesive-structural layer. The use of plasticizer weakly affects the WVP of bilayer membranes; however, the surface hydrophobicity as well as the liquid water adsorption rate is comparable to that of non-plasticized shellac layer. Furthermore, PEG increases the stretchability of bilayer membranes. Either being plasticized or not, shellac layer could improve significantly the functional properties of bilayer barriers and give a promising use as biopackaging.  相似文献   

5.
A continuous flow liquid membrane extraction (CFLME)-C18 precolumn-liquid chromatography system was developed for preconcentration and determination of chlorinated phenols (CPs). After preconcentration by CFLME, which is based on the combination of continuous flow liquid-liquid extraction and supported liquid membrane, CPs were enriched in 960 μl of 0.5 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto the C18 analytical column for separation and detected at 215 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor concentration were optimized. The proposed method presents detection limits of 0.02-0.09 μg l−1 (S/N=3) when 100 ml samples were enriched. The proposed method was successfully applied to determine CPs in tap water and river water samples with spiked recoveries in the range of 70-121%.  相似文献   

6.
The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L−1 and a detection limit of 0.07 ± 0.01 mg L−1. Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform.  相似文献   

7.
A new continuous method for the determination of formaldehyde in air is described. A cylindrical wet effluent diffusion denuder is used for the collection of formaldehyde from air into a thin film of absorption liquid (distilled-deionized water). Formaldehyde in the denuder concentrate is on-line detected employing a chemiluminescence flow method based on a reaction of formaldehyde and gallic acid with hydrogen peroxide in an alkaline solution. The collection efficiency of formaldehyde is quantitative at the air flow rate of 0.5 L min−1 (absorption liquid flow rate of 336 μL min−1). The limit of detection (S/N = 3) is 0.60 μg m−3 HCHO (0.49 ppb). The calibration graph is linear up to 300 μg m−3 HCHO (244 ppb). The relative standard deviations of chemiluminescence method for 1 × 10−6 and 5 × 10−6 M HCHO are 2.87% and 1.49%, respectively. Acetaldehyde interferes negligible, other compounds do not interfere. The method was employed for formaldehyde measurement in ambient air. The comparison measurement illustrates the good agreement of results obtained by proposed method with those obtained by reference fluorimetric method.  相似文献   

8.
A small pilot plant for direct contact membrane distillation (DCMD) based desalination was built and operated successfully on a daily basis for 3 months. The operation employed hot brine at 64–93 °C and distillate at 20–54 °C. The hot brine was either city water, city water containing salt at the level of 3.5, 6 or 10%, or sea water trucked in from Long Island Sound, CT. One to ten horizontal crossflow hollow fiber membrane modules each having either 2448 or 2652 hollow fibers and 0.61 or 0.66 m2 surface area were combined in various configurations to study the plant performance. The highest water vapor flux of 55 kg/(m2 h) was achieved with two modules in series; the flux varied between 15 and 33 kg/(m2 h) for configurations employing 6–10 modules. The highest distillate production rate achieved was 0.62 gallons per minute (gpm). The membrane modules never showed any sign of distillate contamination by salt. The plant operated successfully with a very limited flux reduction at salt concentrations up to 19.5% from sea water. A mathematical model was successfully developed to describe the performance of the pilot plant with multiple crossflow modules in different test configurations.  相似文献   

9.
Chen M  Wei X  Tu Y 《Talanta》2011,85(3):1304-1309
A flow injection analysis (FIA) system with electrochemiluminescent (ECL) detection has been established. Based on a specially designed flow-through ECL cell with a very simple structure, the system possesses rapid response and high sensitivity. With luminol as the ECL reagent, the response of hydrogen peroxide (H2O2) was investigated on the developed FIA-ECL system. After optimizing the experimental conditions, such as the electric parameters, the buffer condition and the flow rate, it was demonstrated that the developed FIA-ECL system works well for quantified assays. Compared with reported works, the present results indicate that the developed FIA-ECL system has the lowest limit of detection (S/N = 3) of 3.0 × 10−9 mol/L for H2O2, which is equal to the level of chemiluminescence (CL). The developed system was successfully used to monitor the yield of reactive oxygen species (ROSs) in water vapour during the work of an ultrasonic humidifier with H2O2 as index. And the amount of ROSs in some other real samples, including tap water, drinking water and river water was detected with recoveries from 92.0% to 106%.  相似文献   

10.
Combining the continuous flow liquid-liquid extraction (CFLLE) and supported liquid membrane (SLM) extraction, a novel aqueous-aqueous extraction technique that we termed continuous flow liquid membrane extraction (CFLME) is developed for trace-enrichment. The analyte was firstly extracted into the organic phase in the CFLLE step, then transported onto the organic liquid membrane that formed on the surface of the micro porous membrane of the SLM equipment. Finally, it passed through the liquid membrane and was trapped by the acceptor. Aspects related to CFLME were studied by using dichloromethane as liquid membrane, and sulfonylurea herbicides as model compounds. An enrichment factor of over 1000 was obtained when 10 μg l−1 of MSM was enriched for 120 min by this technique. The drawbacks of only a few organic solvents can be selected as liquid membrane with a limited lifetime in SLM operation was overcome. In this CFLME method, almost all solvents that used in the conventional liquid-liquid extraction (LLE) can be adopted and the lifetime of liquid membrane is no longer a problem.  相似文献   

11.
In natural gas dehydration units, rich TEG solutions are decompressed before the TEG regeneration stage and the direction of the temperature change during the decompression has been debated. The temperature change from an isenthalpic expansion from (7000 kPa to 440 kPa was measured for the following aqueous mixtures: pure water, 99% pure triethylene glycol (TEG), aqueous TEG (99 wt% TEG + 1% water), aqueous TEG saturated with methane, aqueous TEG saturated with n-pentane, and aqueous TEG saturated with n-heptane. In all cases, the temperature increased upon expansion with the magnitude of the temperature change ranging from 1.4 K for pure water to 2.4 K for TEG. A simple equation of state model predicted the correct direction for the temperature change and the predicted values were within ±1 K of the experimental data.  相似文献   

12.
To improve the vapor permeation performance of aqueous alcohol mixtures, acrylamide (AAm) plasma activation then post-graft polymerization onto an expanded poly(tetrafluoroethylene) (e-PTFE) membrane, e-PTFE-g-AAm, was synthesized in this study. The surface properties of the e-PTFE-g-AAm membrane were characterized using ATR/FTIR, SEM, AFM and the water surface contact angle. The degree of grafting increases with increasing polymerization temperature. A maximum value was obtained at 80 °C. The water contact angle of the pristine e-PTFE membrane and the e-PTFE-g-AAm membrane with a 21% grafting degree was 109.7° and 34.1°, respectively. Optimum vapor permeation performance was obtained using an e-PTFE-g-AAm membrane with a 21% grafting degree for a 90 wt.% aqueous ethanol solution, giving a permeate water concentration of 99.4% and a permeation rate of 648 g/m2 h.  相似文献   

13.
The interaction of steam with phosphoric acid imbibed electrolyte composed of PBI/PPy(50)coPSF 50/50 polymer blend and its effect on fuel cell performance was studied regarding its permeability through and its chemical interaction with the membrane. It was found that steam is the only gas that permeates the membrane with a permeability coefficient 1.1 × 10−14 mol cm cm−2 s−1 Pa−1 at 150 °C. This is attributed either to the high solubility of water in phosphoric acid or to the chemical interaction with pyrophosphoric acid. The latter was demonstrated by carrying out TGA experiments under various water vapor partial pressures. Water reacts with pyrophosphoric acid in order to maintain the equilibrium concentration of phosphoric acid at high level, thus improving proton conductivity and fuel cell performance. In addition it is shown that excess water dissolves in the membrane thus maintaining the “membrane/acid” system at high hydration level. This depends both on temperature and steam partial pressure. Although in the present study it is shown that steam plays a significant role in the performance of the high temperature Polymer electrolyte membrane (PEM) fuel cell, nevertheless its feed with humidified gases is not necessary, due to the back transport of the water produced at the cathode.  相似文献   

14.
The intensity distribution of the Cr–I 428.97 nm resonant and 520.60 nm non-resonant lines was studied as a function of the distance from the anode in a low pressure DC-GD fitted with a Cr metal cathode and operated in various gas atmospheres, including helium (P = 4 mbar), ambient air and water vapor (P = 0.8 mbar). In the helium and ambient air atmospheres, the intensity peaks occurred in the near cathode region (cathode glow) in accordance with the literature. When operated in water vapor, however, the Cr–I 428.97 nm resonant line disappeared, whereas the intensity of the non-resonant 520.60 nm line was enhanced. This result may be attributed to resonant energy transfer collisions taking place between OH radicals excited to the first vibrational level and Cr*428 atoms excited to the z7P0 upper level of the 428.97 nm transition. The similar gas phase composition encountered with a DC electrolyte cathode atmospheric pressure glow discharge (ELCAD) and the Cr metal cathode GD operating under a low pressure of water vapor suggests that the zero intensity of the Cr resonance lines (428.97 nm, 360.53 nm) produced in the ELCAD may be attributed to similar energy transfer processes. Our results show that the intensity of the Cr–I 520.60 nm line can be used for analytical purposes in the ELCAD.  相似文献   

15.
Simultaneous vapor generation of zinc (Zn) and cadmium (Cd) was evaluated by atomic fluorescence spectrometry coupled with an intermittent flow vapor generation system. Some complexing reagents, surfactant and transition metal ions were respectively tested as enhancement reagents. Experiments showed that an appropriate amount of 8-hydroxyquinoline or phenanthroline and nickel ion simultaneously, effectively improved the vapor generation efficiency of Zn and Cd. The volatile species generation was presumed to be a hydrogenation process interpreting how the enhancement reagents played an important role in vapor generation. Additionally, due to the instability of volatile species, reaction temperature, rapid and sufficient mixing of reagents and rapid separation of the volatile species from liquid phase were also crucial. The method of simultaneous determination of Zn and Cd by intermittent flow vapor generation led to the development of atomic fluorescence spectrometry. The detection limits (3σb) were 1.6 μg l−1 for Zn and 0.01 μg l−1 for Cd and the relative standard deviations were 3.6% for Zn (50 μg l−1, n=11) and 1.7% for Cd (2 μg l−1, n=11) respectively. Results for the determination of Zn and Cd have been confirmed by the analysis of CRMs with good agreement between the certified and found values.  相似文献   

16.
The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 °C, 13 W). The eluate was then merged with 3 mol L− 1 HCl, reduction was performed by a NaBH4 solution, and the Hg vapor formed was separated at the gas–liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas–liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 µg L− 1 were obtained for ionic (Hg2+) and HgCH3+, for an injection volume of 200 µL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.  相似文献   

17.
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m−3 range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C4D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s−1), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s−1. A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH3, CH3COOH, HCOOH and, with a derivatization setup, CH2O, by associating the CMDS collection with the determination by CE-C4D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends.  相似文献   

18.
A novel combination of high performance low pressure chromatography with multisyringe flow injection analysis is presented. This system comprises a multisyringe module, three low pressure solenoid valves, a monolithic Chromolith Flash RP-18e column and a diode array spectrophotometer. UV detection is carried out at 250 nm. AutoAnalysis software is used for instrumental control and automated data collection. The results obtained with multisyringe liquid chromatography (MSC) were compared with those obtained with a HPLC system using similar conditions. The chromatographic parameters were calculated from a mixture of anthracene and thiourea using a mobile phase containing acetonitrile-water (60:40) at a flow rate of 2 ml min−1. The proposed MSC system has been successfully applied to the determination of amoxicillin, ampicillin and cephalexin using a mobile phase of sodium acetate buffer (pH 6.2, 0.1 mol l−1)-methanol (90:10) at a flow rate of 2 ml min−1. The low-cost, flexibility and simplicity of MSC should be highlighted.  相似文献   

19.
This work presents a new sequential injection analysis (SIA) method and a module for simultaneous and real-time monitoring of three key parameters for the beverage industry, i.e., the sugar content (measured in Brix), color and dissolved CO2. Detection of the light reflection at the liquid interface (the schlieren effect) of sucrose and water was utilized for sucrose content measurement. A near infrared LED (890 ± 40 nm) was chosen as the light source to ensure that all the ingredients and dyes in soft drinks will not interfere by contributing light absorption. A linear calibration was obtained for sucrose over a wide concentration range (3.1-46.5 Brix). The same module can be used to monitor the color of the soft drink as well as the dissolved CO2 during production. For measuring the color, the sample is segmented between air plugs to avoid dispersion. An RGB-LED was chosen as the light source in order to make this module applicable to a wide range of colored samples. The module also has a section where dissolved CO2 is measured via vaporization of the gas from the liquid phase. Dissolved CO2, in a flowing acceptor stream of water resulting in the change of the acceptor conductivity, is detected using an in-house capacitively coupled contactless conductivity detector (C4D). The module includes a vaporization unit that is also used to degas the carbonated drink, prior the measurements of sucrose and color within the same system. The method requires no chemicals and is therefore completely friendly to the environment.  相似文献   

20.
This work describes development of a flow injection (FI) system for determination of iodide, based on the chemiluminescence (CL) reaction between iodine and luminol. Iodide in the sample zone is oxidized to iodine. Employment of a gas-diffusion (GD) unit allows for selective detection of the generated CL (425 nm). Preliminary results showed for concentrations of less than 2 mg L−1, that signals were irreproducible and that the calibration was not linear.In order to solve these problems, a method of ‘membrane conditioning’ was investigated, in which iodide stream was continuously merged with oxidant to generate I2 that conditioned the GD membrane and tubing. This minimized surface interaction between the active surface and the I2 generated from the samples, thus improving both precision and sensitivity. By employing membrane conditioning, it has been possible to reliably detect concentrations down to 0.1 mg L−1.At the optimized condition, an excellent linear calibration (r2 = 0.999) was obtained from 0.1 to 1.0 mg L−1. The method was successfully applied to determine iodide in some pharmaceutical products such as potassium iodide tablets and a liquid patent medicine. However, for vitamin tablets, ascorbic acid was found to interfere seriously by causing a negative signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号