首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the microfiltration of skim milk in order to separate caseins micelles from two whey proteins, α-lactalbumin (α-La) and β-lactoglobulin (β-Lg), using a modified dynamic filtration pilot (MSD) consisting in 6 ceramic 9-cm diameter membrane disks of 0.2 μm pores, rotating around a shaft inside cylindrical housing. A comparison was made with another dynamic filtration module consisting in a disk rotating near a fixed PVDF 15.5 cm diameter membrane with 0.15 μm pores. Maximum permeate fluxes were 120 L h−1 m−2 with the MSD module at 1930 rpm and at 40 °C, and 210 L h−1 m−2 at 2500 rpm and 45 °C, with the rotating disk module. Casein rejection was around 99% at high speed for both membranes. α-La transmission decreased with increasing transmembrane pressure (TMP) from 75% to 60% for ceramic membranes and from 25% to 10% for the PVDF one. β-Lg transmissions were lower, ranging from 23% to 15% for ceramic membranes and from 20% to 5% for the PVDF one. In a concentration test with the PVDF membrane at 2000 rpm, the flux decayed from 200 L h−1 m−2 at initial concentration to 80 L h−1 m−2 at VRR = 3.2 and 22.1% of the initial α-La mass was recovered in the permeate, against 8.1% for β-Lg. Permeate fluxes in the mass transfer limited regime (Jlim) of the MSD and rotating disk module operated at various speeds were well correlated by the equation Jlim = 17.13 Vav where Vav denoted the disk azimuthal velocity averaged over the membrane area. Measurements of Jlim, taken from Ref. [G. Samuelsson, P. Dejlmek, G. Tragardh, M. Paulsson, Minimizing whey protein retention in crossflow microfiltration of skim milk. Int. Dairy J. 7 (1997) 237–242] during MF of skim milk using tubular ceramic membranes at velocities from 1.5 to 8 m s−1 with permeate co-current recirculation were found to obey the same correlation.  相似文献   

2.
A variety of biochemical and physical properties of proteins are regulated by calcium ion (Ca2+) binding with varying specificity and affinity. Calcium ion binding can adjust the phospholipid-protein interactions through changing the properties of phospholipid membrane. As an attractive detection technique, whole column imaging detection (WCID) coupled to capillary isoelectric focusing (cIEF) displays several advantages in the study of protein-ligand and protein-protein interactions, including fast and high-efficient separation, high resolution, and simple operation. In this study, a cIEF-WCID method was evaluated for studying the effect of Ca2+ binding on protein structural changes and phospholipid-protein interactions. Four proteins with different isoelectirc point (pI), trypsin inhibitor (pI = 4.5), β-lactoglobulin B (pI = 5.2), phosphorylase b (pI = 6.3), and trypsinogen (pI = 9.3), were used for this purpose. The targeted proteins exhibited altered cIEF profiles due to protein conformation changes resulting from the Ca2+ binding. The study showed that Ca2+ can be buried in the phospholipid membrane, modify the membrane property, and change the phospholipid-protein interactions. The utility of the cIEF-WCID technique demonstrates that the calcium binding plays a crucial role in the protein structural changes and the phospholipid-protein interactions, and elucidates the possible mechanisms involved in calcium-protein binding and calcium bound phospholipid-protein interactions.  相似文献   

3.
β-Lactoglobulin-carboxymethyl cyclodextrin (β-LG-CMCyD) conjugates were prepared by using water soluble carbodiimide. Three kinds of CMCyDs differing in molecular mass were used to investigate the effects of different CMCyD contents, net charge and hydrophobicity on the structural changes in β-lactoglobulin. The effect of CMCyDs on the structure of β-lactoglobulin was utilized to investigate the contribution of hydrophobic interactions to the stability of the protein. Spectroscopic studies suggested that the conformation around had not changed in either conjugate but the α-helix content of β-LG-CMCyD conjugates had markedly increased as compared with that of β-lactoglobulin. The differential scanning calorimetry technique confirmed that the addition of one glucose unit in β-LG-CMCyD conjugates, enthalpy change of calorimetry decreased and the denaturation temperature of each conjugate was higher than that of native β-lactoglobulin. The heat contents agreed well with the conformational transition measured by molar ellipticity at 222 nm ([θ]222) and Stoke's radius (RS) values. Therefore, hydrophobic forces play an important role in stabilizing and shielding of the β-LG-CMCyD conjugates.  相似文献   

4.
SrCo1−yNbyO3−δ (y = 0.025–0.4) were synthesized for oxygen separation application. The crystal structure, phase stability, oxygen nonstoichiometry, electrical conductivity, and oxygen permeability of the oxides were systematically investigated. Cubic perovskite, with enhanced phase stability at higher Nb concentration, was obtained at y = 0.025–0.2. However, the further increase in niobium concentration led to the formation of impurity phase. The niobium doping concentration also had a significant effect on electrical conductivity and oxygen permeability of the membranes. SrCo0.9Nb0.1O3−δ exhibited the highest electrical conductivity and oxygen permeability among the others. It reached a permeation flux of ∼2.80 × 10−6 mol cm−2 s−1 at 900 °C for a 1.0-mm membrane under an air/helium oxygen gradient. The further investigation demonstrated the oxygen permeation process was mainly rate-limited by the oxygen bulk diffusion process.  相似文献   

5.
For BSA and β-lactoglobulin adsorption to hydrophobic interaction chromatography (HIC) stationary phases leads to conformational changes. In order to study the enthalpy (ΔHads), entropy (ΔSads), free energy (ΔGads) and heat capacity (Δcp,ads) changes associated with adsorption we evaluated chromatographic data by the non-linear van’t Hoff model. Additionally, we performed isothermal titration calorimetry (ITC) experiments. van’t Hoff analysis revealed that a temperature raise from 278 to 308 K increasingly favoured adsorption seen by a decrease of ΔGads from −12.9 to −20.5 kJ/mol for BSA and from −6.6 to −13.2 kJ/mol for β-lactoglobulin. Δcp,ads values were positive at 1.2 m (NH4)2SO4 and negative at 0.7 m (NH4)2SO4. Positive Δcp,ads values imply hydration of apolar groups and protein unfolding. These results further corroborate conformational changes upon adsorption and their dependence on mobile phase (NH4)2SO4 concentration. ITC measurements showed that ΔHads is dependent on surface coverage already at very low loadings. Discrepancies between ΔHads determined by van’t Hoff analysis and ITC were observed. We explain this with protein conformational changes upon adsorption which are not accounted for by van’t Hoff analysis.  相似文献   

6.
Electrodialysis (ED) is a membrane process used on a large scale. However, one of the common problems is fouling of ion-exchange membranes stacked in the cell. The use of pulsed power, consisting in applying a constant current density during a fixed time of application (Ton) followed by a pause duration (Toff), was demonstrated recently as an effective fouling mitigation method for electrodialysis. Up until now, no work has investigated the potential of electrodialysis using pulsed electric field on protein fouling. The aim of the present work was to study the influence of pulsed electric field (PEF) with a low frequency square shaped periodic signal (Ton = 10 s–Toff = 10 s, Ton = 10 s–Toff = 40 s) in comparison with dc current during electrodialysis of a casein solution at different current densities (10, 20 and 30 mA/cm2) on membrane fouling. It appeared from these results that PEF, under certain conditions of pulse, would avoid fouling on anion-exchange membranes. For 10 s–40 s pulsed electric field conditions, no fouling was observed with any density, while for 10 s–10 s PEF conditions, fouling appeared only at current density over 10 mA/cm2. dc current, whatever the current density conditions, led to a fouling on the diluate side of the AEM. Furthermore, when fouling occurred, magnitude layer thickness and dry weight increased with the applied current density. The nature of the fouling was identified as 97% protein. The protein fouling would be due to the dissociation of water molecules and/or heat increase at the anion-exchange membrane interface. The relaxation time of the pulse would limit both phenomena on the membrane.  相似文献   

7.
The long-term stability of Pd–23%Ag/stainless steel composite membranes has been examined in H2/N2 mixtures as a function of both temperature and feed pressure. During continuous operation, the membrane shows a good stability at 400 °C while the N2 leakage increases very slowly at a temperature of 450 °C (Pfeed = 10 bar). After 100 days of operation (Pfeed = 5–20 bar, T = 350–450 °C), the N2 permeance equals 7.0 × 10−9 mol m−2 s−1 Pa−1, which indicates that the H2/N2 permselectivity still lies around 500, based on a H2 permeance equal to 3.0 × 10−6 mol m−2 s−1 Pa−1. Despite the generation of small pinholes, a membrane life-time of several (2–3) years (T ≤ 425 °C) is estimated for the experimental conditions employed based on long-term stability tests over 100 days. Post-process characterisation shows a considerable grain growth and micro-strain relaxation in the Pd–23%Ag membrane after the prolonged permeation experiment. Changes in surface area are relatively small. In addition, segregation of Ag to the membrane surfaces is observed. The formation of pinholes is identified as the main source for the increased N2 leakage during testing at higher temperature.  相似文献   

8.
This work aims for determining the impact of different environmental conditions, such as pH, ionic strength (salt concentration) and the chemistry of the membrane surface (hydrophilic/hydrophobic character) on the structure of permeating proteins after ultrafiltration. In the permeation experiments reported in this paper, different solutions of a model protein – β-lactoglobulin – at pH 3, 5 and 8 and salt concentrations of 1, 10 and 100 mM were processed with membranes of different molecular weight cut-off (10 and 30 kDa) and materials (regenerated cellulose—RC, and polyethersulfone—PES).  相似文献   

9.
Separation of large bioactive molecules such as proteins, DNAs and RNAs using aqueous two-phase systems (ATPSs) and liquid–liquid partition-based counter-current chromatography (CCC) can avoid risks of sample loss and denaturation, and greatly reduce processing time. We have constructed toroidal columns (length 26–140 m, column volume 51–280 ml, bore size 1.6 mm) suitable for mounting onto a commercially available preparative CCC apparatus. With the use of an ATPS containing 12.5% (w/w) PEG1000 and 12.5% (w/w) K2HPO4 and at a rotational speed of 800 rpm for the rotor of the CCC device, the lower phase (i.e. the phosphate-enriched phase) has been used as the mobile phase and a pair of proteins, myoglobin and lysozyme, as model proteins for demonstrating the separation capability of the CCC system. For a toroidal column with a length of 53.5m and a column volume of 107.5 ml, and operated for the Coriolis force parallel flow mode at 0.62 ml/min, protein sample loading (containing 2.2 mg/ml myoglobin and lysozyme, respectively) at 1.7% and 7.4% to the column volume led to peak resolution (with theoretical plate number TP and stationary phase retention Sf shown in the parenthesis) of Rs = 1.5 (N = 211 and N = 113 TP for myoglobin and lysozyme, respectively, and Sf = 45.0%), and Rs = 1.4 (218 and 152 TP, and Sf = 34.0%). However, further increase of the loading to 13% failed to separate the two proteins. Although proteins eluted at positions predictable from the distribution coefficients, they showed broader peaks when compared with small dipeptides under identical CCC operating conditions. This confirms that the molecular weight of the partitioned species is an important factor causing peak broadening on CCC chromatograms. These results paved the way for further scaling-up toroidal CCC columns for processing larger quantities of samples containing large biomolecules.  相似文献   

10.
In this communication, a porous stainless steel (PSS) tube was electrolessly plated into Pd–Ag membrane reactor which was used for separating hydrogen produced in an ethanol steam reforming reaction with the addition of oxygen, which has not been reported before. Palladium and silver were deposited on porous stainless steel tube via the sequential electroless plating procedure with an overall film thickness of 20 μm and Pd/Ag weight ratio of 78/22. Ethanol–water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with MDC-3. The reaction temperatures were set at 593–723 K and the pressures 3–10 atm. The effect of oxygen addition plays a vital role on the ethanol steam reforming reaction, especially for the Pd–Ag membrane reactor in which a higher flux of hydrogen is required. If oxygen in the feed is not sufficient, it would be possible that steam reforming reaction prevails. Inversely, high O2 addition will shift the reaction scenario to be partial oxidation dominating, and selectivity of CO2 increases with increasing oxygen feed. At high pressure, autothermal reaction of ethanol would be easily reached.  相似文献   

11.
Long-range electron transfer (ET) matrix elements (VPS), rate constants (kET) and reorganization energies for ET from phthalimide radical (pha) moiety to methyl aminoacetate radical (aa) moiety in pa–(gly)n = 0–6–aa (pa = C6H4(CO)2N–(CH2CO), gly = glycine, aa = HNCH2COOCH3) ionic molecules have been investigated using two-state variational method (TSVM) and classical rate model. Calculations on VPS reveal that the overlap between the frontier orbitals of two diabatic states is quite small, which leads to a small value of VPS. kET has a minimum at the range n = 1–3 for β-strand conformation, but linearly increases as the peptide chain length (n) increases for pro II-helix conformation. These results are in good agreement with the experimental predictions. Relevant ET mechanisms are elucidated. The transition energies for charge transfer in such systems are also calculated to test the influences of local dipoles on the potentials of the donor and acceptor. For comparison electron couplings in [pa–(gly)n = 1,3–aa]+ cations are calculated and the effects of electron correlation on inner reorganization energies in pha + pha−/+ self-exchange reactions are examined at different levels of theory respectively. Calculated results are discussed also.  相似文献   

12.
Facilitated transport of Am(III) in nitric acid medium using tetra(2-ethyl hexyl) diglycolamide (TEHDGA) in n-dodecane as carrier was studied. It was aimed at finding out the physico-chemical model for the transport of Am(III) using TEHDGA/n-dodecane as carrier under various experimental parameters like feed acidity, carrier concentration, varying strippant, varying membrane pore size, etc. The feed acidity and carrier concentrations were varied from 1 M to 6 M HNO3 and 0.1 M to 0.3 M TEHDGA/n-dodecane, respectively. The transport of Am(III) increased with increase in feed acidity and carrier concentration reaching maximum at 3 M HNO3 and 0.2 M TEHDGA/n-dodecane, respectively. Several stripping agents were tested and 0.1 M HNO3 was found to be the most suitable stripping agent for this system. Almost quantitative transport of Am(III) was observed at about 180 min with feed acidity of 3 M HNO3, 0.1 M HNO3 as strippant and 0.2 M TEHDGA/n-dodecane as carrier. The pore size of the membrane support was varied from 0.20 μm to 5 μm and the permeation coefficient increased with increase in pore size up to 0.45 μm (2.43 × 10−3 cm/s), and then decreased with further increase in pore size. The plot between permeation coefficient vs. (membrane thickness)−1 was linear which showed that the Am(III) transport was membrane diffusion limited. The membrane diffusion coefficient calculated from the graph was found to be 1.27 × 10−6 cm2/s and its theoretical value was 1.22 × 10−6 cm2/s. The stability of the carrier against leaching out of the membrane support as well as the integrity of membrane support was studied over a period of 30 days and was found to be satisfactory within the studied time period.  相似文献   

13.
Daniele S  Bragato C  Baldo MA  Ciani I 《Talanta》2008,77(1):235-240
The performance in anodic stripping voltammetry (ASV) of hemispherical mercury microelectrodes, fabricated by electrodeposition of liquid mercury on the surface of Pt microdisks which were surrounded by a rather thick or thin insulating shield, was compared. The Pt microdisks were produced by sealing a wire of 25 μm diameter into a glass capillary, and by coating the cylindrical length of the Pt wire with a cathodic electrophoretic paint. The ratio of the overall tip radius b, to the basal radius of the electrode a, so-called RG = b/a, was equal to 110 ± 10 and 1.52 ± 0.01 for the thick- and thin-shielded microdisk, respectively. The mercury microelectrodes were characterized by cyclic voltammetry at 1 mV s−1, in 1 mM Ru(NH3)63+ aqueous solution. The steady-state voltammogram recorded with the thin-shielded mercury microelectrode displayed less hysteresis, while the steady-state current was about 30% higher than that of the thicker one. This was a consequence of the additional flux due to diffusion from behind the plane of the electrode. The flux enhancement, which was operative at the thin-shielded mercury microelectrode during the deposition step in the ASV experiments, allowed recording stripping peaks for Cd and Pb, which resulted about 32% larger than those recorded at the thicker shielded mercury microelectrode, under same experimental conditions.The usefulness of the thin-shielded mercury microelectrode for ASV measurements in real samples was verified by determining the content of heavy metal ions released in the pore water (pH 4.5) of a soil slurry.  相似文献   

14.
A TiO2 membrane supported on a planar porous Ti–Al alloy was prepared by combination of electrophoretic deposition and dip-coating. In the electrophoretic deposition process, the membrane thickness increased linearly with the square root of the deposition time, while increased with decrease of the suspension viscosity. The perfect TiO2/Ti–Al composite membrane was obtained by further dip-coating modification. SEM images showed that the surface of the membrane was defect-free. XRD result indicated that rutile TiO2 still remained in the membrane bulk as the main phase, while a new phase titanium oxides with the form of TixOy, where y is less than 2x, was also observed. The supported TiO2/Ti–Al composite membrane had an average pore size of 0.28 μm, a thickness of 40 μm or so and a pure water flux of 3037 L m−2 h−1 bar−1.  相似文献   

15.
Bromination of meso-tetraphenylporphyrin, H2TPP with controlled amounts of N-bromosuccinimide at ambient conditions in CHCl3 produced β-dibromo and tribromotetraphenylporphyrins. The regiochemistry of the ZnTPPR3 (R = Br, Ph) complexes indicate the antipodal substitution at the β-pyrrole positions.  相似文献   

16.
Microfiltration of whey protein solutions by tubular ceramic membranes, under constant cross-flow and trans-membrane pressure, with periodic backwashing, is investigated using a fully instrumented pilot unit. Relatively large nominal membrane pore size (0.8 μm) insures very high protein transmission, which is desirable in applications such as microbial load reduction. In the first of a sequence of three filtration-backwashing cycles, irreversible and reversible fouling are identified, over the tested pressure range of 5–17.5 psi. Early in the first cycle, especially at the higher pressures, a pore constriction/blocking mechanism appears to be responsible for the irreversible fouling. In the other two cycles only the reversible fouling is significant, possibly due to some kind of protein layer formation on the membrane surface. The permeate flux level tends to increase by increasing trans-membrane pressure up to a near-optimum value of 10 psi, beyond which pressure has a negative effect. This interesting trend is attributed to the interplay of cross-flow velocity, which tends to reduce fouling by promoting re-suspension and breakage of colloidal protein agglomerates, with the trans-membrane pressure (and related flux) which leads to protein layer formation on the membrane and may impose compressive stresses, thereby increasing its resistance to permeation.  相似文献   

17.
A new, simple method was reported to prepare PDMS membranes with micrometer size pores for microfluidic chip applications. The pores were formed by adding polystyrene and toluene into PDMS prepolymer solution prior to spin-coating and curing. The resulting PDMS membrane has a thickness of around 10 μm and macropores with a diameter ranging from 1 to 2 μm measured using scanning electron microscope (SEM) imaging. This PDMS membrane was validated by integrating it with PDMS microfluidic chips for protein separation using isoelectric focusing mechanism coupled with whole channel imaging detection (IEF-WCID). It has been shown that five standard pI markers and a mixture of two proteins, myoglobin and β-lactoglobulin, can be separated using these chips. The results indicated that this macroporous PDMS membrane can replace the dialysis membrane in PDMS chips for the IEF-WCID technique. The preparation method of macroporous PDMS membrane may be potentially applied in other fields of microfluidic chips.  相似文献   

18.
Commercial deployment of membrane-based technology for high temperature gas separation requires the development of reliable processing of thin supported ceramic membranes. The asymmetric membranes should also demonstrate high oxygen flux in long term operation often encountered in stringent conditions. These requirements may be fulfilled by designing thin membrane films of chemically and mechanically strong CaTi0.9Fe0.1O3−δ oxide material, as prepared in this work. The supported membranes were produced by means of a versatile manufacturing protocol with potential for mass production. It makes use of tape-casting, co-lamination and co-sintering of green laminates. The porosity of the mechanical supports was tailored through the addition of different pore formers, like corn starch and ammonium oxalate, in order to form a well-connected porous network. As-produced 30-μm thin supported CaTi0.9Fe0.1O3−δ membranes were thoroughly characterized to establish relationships between manufacturing parameters and membrane microstructure. The oxygen permeation rates under air/argon gradient in the temperature range 800–1050 °C were investigated. It is concluded that pressure drop resistance in supports strongly contributed to reduce the oxygen flux. Appropriate selection of pore former type and content reduced this effect yielding increased oxygen flux, which became under control of bulk diffusion.  相似文献   

19.
BaCo0.7Fe0.3−xNbxO3−δ (BCFN, x = 0–0.2) were prepared by the conventional solid state reaction process. The crystal structure, electrical conductivity and oxygen desorption property were studied by X-ray diffraction (XRD), different thermal analysis (DTA), four-terminal direct current conductivity and oxygen temperature programmed desorption (O2-TPD), respectively. At x = 0.08–0.20, BCFN have a cubic perovskite structure, while it exhibits the hexagonal structure for x = 0.00 and the mixed phases of cubic perovskite with trace amount of hexagonal for x = 0.05. BCFN shows good structure stability in 5%H2 + Ar reducing atmosphere, and it is enhanced with the increased Nb-doping content. The electrical conductivity of BCFN increases with increasing temperature and decreases with the Nb substitution content for iron. BCFN exhibits a p-type semiconductor and obeys the thermally activated small polarons hopping mechanism. The oxygen fluxes increase with the working temperature and the COG flow rate, but decrease with increasing Nb content. The flux of BCFN (x = 0.08) with 1.0 mm thickness membrane reaches 25.77 ml min−1 cm−2 at 875 °C, higher than most of the reported materials.  相似文献   

20.
The determination of tetracycline by fluorescence spectrophotometry in complex matrices has some difficulties, because the presence of other compounds in the matrix affects the analytical signal. In this work, the effect of some inorganic species that are present in whey milk on the fluorescence signal of tetracycline is studied using a D-optimal experimental design. Next, an experimental strategy is proposed in conjunction with Parallel Factor Analysis, PARAFAC, modeling that leads to suitably modeling the severe matrix effect in the determination of tetracycline in whey milk. A specific design is performed in such a way that the lack of trilinearity due to the effect of the presence of interferents on the signal is obviated. Then, ten test samples from three brands of milk, spiked with different quantities of tetracycline and measured in 2 days were analysed using this methodology (mean of the absolute value of the relative errors: 5.1%). The developed analytical method fulfils the property of trueness, the relative errors being, both in calibration and prediction, inside the interval set by Commission Decision 2002/657/EC at these concentration levels. Decision limits (CCα) at x0 = 0 μg L−1 and at x0 = 100 μg L−1 were 13.2 and 112.4 μg L−1 respectively, for α = 0.05; whereas detection capabilities (CCβ) were 25.9 μg L−1 and 124.4 μg L−1 respectively for α = β = 0.05.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号