首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
We study the possibility of the existence of extra fermion families and an extra Higgs doublet. We find that requiring the extra Higgs doublet to be inert leaves space for three extra families, allowing for mirror fermion families and a dark matter candidate at the same time. The emerging scenario is very predictive: It consists of a standard model Higgs boson, with a mass above 400 GeV, heavy new quarks between 340 and 500 GeV, light extra neutral leptons, and an inert scalar with a mass below M(Z).  相似文献   

2.
In this paper we propose a possible explanation to the Fermion mass hierarchy problem by fitting the type-II seesaw mechanism into the Higgs doublet sector, such that their vacuum expectation values are hierarchal. We extend the Standard Model with two extra Higgs doublets as well as a spontaneously broken UX(1) gauge symmetry. All the fermion Yukawa couplings except that of the top quark are of O(10-2) in our model. Constraints on the parameter space of the model from low energy processes are studied. Besides, the lightest one of the neutral fermion fields, which is introduced to cancel the anomalies of the U(1)X gauge symmetry can be the cold dark matter candidate. We investigate its signature in the dark matter direct detection.  相似文献   

3.
4.
We review the recent discovery of the Higgs like particle at ~ 125 GeV and its implications for particle physics models. Specifically the implications of the relatively high Higgs mass for the discovery of supersymmetry are discussed. Several related topics such as naturalness and supersymmetry, dark matter and unification are also discussed.  相似文献   

5.
As one of the key properties of the Higgs boson, the Higgs total width is sensitive to the global profile of the Higgs boson couplings, and thus new physics would modify the Higgs width. We investigate the total width in various new physics models, including various scalar extensions, composite Higgs models, and the fraternal twin Higgs model. Typically, the Higgs width is smaller than the standard model value due to mixture with other scalars if the Higgs is elementary, or curved Higgs field space for the composite Higgs. On the other hand, except for the possible invisible decay mode, the enhanced Yukawa coupling in the two Higgs doublet model or the exotic fermion embeddings in the composite Higgs could enhance the Higgs width greatly. The precision measurement of the Higgs total width at the high-luminosity LHC can be used to discriminate certain new physics models.  相似文献   

6.
In the multi-component configurations of dark matter phenomenology,we propose a minimal twocomponent configuration which is an extension of the Standard Model with only three new fields;one scalar and one fermion interact with the thermal soup through Higgs portal,mediated by the other scalar in such a way that the stabilities of dark matter candidates are made simultaneously by an explicit Z2 symmetry.Against the most common freeze-out framework,we look for dark matter particle signatures in the freeze-in scenario by evaluating the relic density and detection signals.A simple distinguishing feature of the model is the lack of dark matter conversion,so the dark matter components act individually and the model can be adapted entirely to both singlet scalar and singlet fermionic models,separately.We find dark matter self-interaction as the most promising approach to probe such feeble models.Although the scalar component satisfies this constraint,the fermionic one refuses it even in the resonant region.  相似文献   

7.
Various conditions necessary for the self-consistency of the Weinberg-Salam model are used to place constraints on fermion and Higgs Boson masses. We find that spontaneous symmetry breakdown cannot generate fermion masses in excess of about 300 GeV.  相似文献   

8.
We study numerically the renormalization group equations for the Higgs potential of the two-doublet model assuming perturbative unification and sufficiently large initial quartic and Higgs-Yukawa couplings such that the full nonlinearities interplay. We obtain predictions for the physical Higgs boson spectrum in the two-doublet model up to systematic differences in fermion coupling schemes. Unambiguous predictions emerge only when there exists a heavy generation in which quarks couple to both doublets. In other cases we find that the potential can become quartically unstable at low energies for arbitrary initial stable values of the coupling constants.  相似文献   

9.
We study an effective theory beyond the standard model(SM) where either of the two additional gauge singlets, a Majorana fermion and a real scalar, constitutes all or some fraction of dark matter. In particular, we focus on the masses of the two singlets in the range of O(10) MeV-O(10) GeV with a neutrino portal interaction, which plays an important role not only in particle physics but also in cosmology and astronomy. We point out that the thermal dark matter abundance can be explained by(co-)annihilation, where the dark matter with a mass greater than 2 GeV can be tested in future lepton colliders, CEPC, ILC, FCC-ee and CLIC, in the light of the Higgs boson invisible decay. When the gauge singlets are lighter than O(100) MeV, the interaction can affect the neutrino propagation in the universe due to its annihilation with cosmic background neutrino into the gauge singlets. Although in this case it can not be the dominant dark matter, the singlets are produced by the invisible decay of the Higgs boson at such a rate which is fully within reach of future lepton colliders. In particular, a high energy cutoff of cosmic-ray neutrino,which may account for the non-detection of Greisen-Zatsepin-Kuzmin(GZK) neutrino or the non-observation of the Glashow resonance, can be set. Interestingly, given the cutoff and the mass(range) of WIMPs, a neutrino mass can be"measured" kinematically.  相似文献   

10.
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.  相似文献   

11.
The six quark Weinberg-Salam model with the symmetry of the three generation permutation group S3 has an extra O(2) pseudosymmetry when the Higgs fields lie in an S3 doublet. We use this model as a prototype to question the derivation of zeroth order relations between fermion mixing angles and fermion masses.  相似文献   

12.
We present a SUSY model with four Higgs doublets of the"private type,"in which all fermion types(up,down,and charged leptons)obtain their masses from a different Higgs doublet H_f(f=u_1,d,e) .The conditions for anomaly cancellation imply that the remaining Higgs doublet of the model( Hu_2 )must have the same hypercharge as Hu_1 ,and thus,can only couple to up-type quarks,which opens the possibility to have FCNCs only in this sector.We study the Lagrangian of the model,and in particular,the Higgs potential,to identify the Higgs mass-eigenstates and their interactions;for the Yukawa matrices,we consider the four-texture case.We obtain constraints on the model parameters by using LHC measurements on the properties of the 125 GeV Higgs boson(h),and identify viable regions of the parameter space.Subsequently,these constraints are used to evaluate the prospects for detecting the FCNC decay mode t→ch at the future high-luminosity(HL)option for the LHC,which are compared with current limits from LHC-run2.Moreover,we evaluate the FCNC decay of the next heavier Higgs boson H2→tc ,which can typically reach BR(H_2→tc)≈(10-4-10-5) .The search for the signal at HL-LHC is also studied,and it is found that it may be detectable for specific regions of the model parameter space.  相似文献   

13.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

14.
We study a two-Higgs doublet model with four generalised CP symmetries in the scalar sector. Electroweak symmetry breaking leads automatically to spontaneous breaking of two of them. We require that these four CP symmetries can be extended from the scalar sector to the full Lagrangian and call this requirement the principle of maximal CP invariance. The Yukawa interactions of the fermions are severely restricted by this requirement. In particular, a single fermion family cannot be coupled to the Higgs fields. For two fermion families, however, this is possible. Enforcing the absence of flavour-changing neutral currents, we find degenerate masses in both families or one family massless and one massive. In the latter case the Lagrangian is highly symmetric, with the mass hierarchy being generated by electroweak symmetry breaking. Adding a third family uncoupled to the Higgs fields and thus keeping it massless we get a model which gives a rough approximation of some features of the fermions observed in Nature. We discuss a number of predictions of the model which may be checked in future experiments at the LHC.  相似文献   

15.
We discuss here the possibility of the breaking of Salam-Weinberg symmetry by Higgs particles which are superheavy. The symmetry breaking is associated with a nonzero vacuum expectation value of fermion condensates. This mechanism, if operative in nature, will imply the absence of Higgs particles at the weak scale.  相似文献   

16.
《Physics letters. [Part B]》1986,174(3):303-306
Two composite models based on SO(10) are explored, the first containing a fermion and a scalar each in the 16 rep, the second containing two fermion reps 10 + 16. The second model contains a massless composite fermion in the confined picture with a Higgs picture interpretation.  相似文献   

17.
Measuring the fermion Yukawa coupling constants is important for understanding the origin of the fermion masses and their relationship with spontaneously electroweak symmetry breaking.In contrast,some new physics(NP)models change the Lorentz structure of the Yukawa interactions between standard model(SM)fermions and the SM-like Higgs boson,even in their decoupling limit.Thus,the precise measurement of the fermion Yukawa interactions is a powerful tool of NP searching in the decoupling limit.In this work,we show the possibility of investigating the Lorentz structure of the bottom-quark Yukawa interaction with the 125 GeV SM-like Higgs boson for future e^+e^- colliders.  相似文献   

18.
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18) m. The vacuum remains stable in our model, because neutral strings are not energetically favored.  相似文献   

19.
Yu Cheng  Wei Liao  Qi-Shu Yan 《中国物理C(英文版)》2022,46(6):063103-063103-10
We explore the possibility that the dark matter relic density is not produced by a thermal mechanism directly, but by the decay of other heavier dark-sector particles which themselves can be produced by the thermal freeze-out mechanism. Using a concrete model with light dark matter from dark sector decay, we study the collider signature of the dark sector particles associated with Higgs production processes. We find that future lepton colliders could be a better place to probe the signature of this kind of light dark matter model than hadron colliders such as LHC. Also, we find that a Higgs factory with center-of-mass energy 250 GeV has a better potential to resolve the signature of this kind of light dark matter model than a Higgs factory with center-of-mass energy 350 GeV.  相似文献   

20.
We introduce a simple dynamical scheme to supplement the complementarity and Higgs phase analyses of composite model with semi-simple group and determine the order of appearance of the condensates of the simple groups.Together with the Higgs phase analysis,it can help to determine the global symmetry of the fermion composite.The global symmetry group can be gauged to form the low energy dynamical symmetry group of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号