首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of nitrate from mixed acid etchant (MAE) wastewater was investigated by neutralization, followed by reverse osmosis (RO) membrane filtration. The coating of a RO membrane was conducted using polyacrylic acid (PAA) in order to enhance the removal of nitrate from the MAE wastewater. The addition of KOH, for the neutralization of the MAE wastewater, was most effective in terms of solid–liquid separation. Double RO filtrations, with crossflow and stirred-flow units, were examined in terms of nitrate rejection and membrane permeability. The Donnan exclusion, due to change in the solution pH, played an important role in nitrate rejection. As a result, RO filtration, at a moderate acidic pH level (e.g., pH 4), provided greater nitrate rejection than that at neutral or alkaline pH levels. The Donnan effect was associated with acetic acid present in MAE wastewater, since it could deprotonate to acetate with a negative charge. Improvement in nitrate rejection occurred with the PAA coating of the original RO membrane. This is because of the enhanced electrostatic repulsion of the nitrate by the carboxyl groups on the coated membrane surface, although the flux declined with the PAA coatings. The effect of charge repulsion was more obvious in the second pass of RO filtration where the ionic strength was relatively low. The increase in nitrate rejection leveled off with a PAA dosage of 0.262 mg/cm2 of the membrane, so further coating beyond this level should be prevented.  相似文献   

2.
Dairy manure, one of the most abundant agricultural wastes generated in livestock farming, was pretreated with KOH aqueous solution to relieve the constraint of lignin, thus facilitating cellulose hydrolysis. The generated black liquor waste was used to prepare porous carbon. Glucose yield of 261 g/kg was obtained from dairy manure pretreated in 0.73 wt% HCl aqueous solution, much higher than that obtained from crude dairy manure (116 g/kg). The generated black liquor, mainly containing lignin and KOH, was employed to prepare porous carbon via a self-templating method. The obtained material had a three-dimensional (3D) hierarchical structure and was applied for supercapacitors. Good capacitance of 202 F/g was obtained in a two-electrode system with 6 M KOH electrolyte. The porous carbon-based electrode showed excellent cycling stability with retention of 100% after 3000 galvanostatic charge–discharge (GCD) cycles. This work provides a scalable strategy for comprehensive utilization of lignocellulosic biomass resources.  相似文献   

3.
A method based on a simple linear regression fitting was proposed and used to determine the type, the chronological sequence, and the relative importance of individual fouling mechanisms in experiments on the dead-end filtration of colloidal suspensions with membranes ranging from loose ultrafiltration (UF) to nanofiltration (NF) to non-porous reverse osmosis (RO). For all membranes, flux decline was consistent with one or more pore blocking mechanisms during the earlier stages and with the cake filtration mechanism during the later stages of filtration. For ultrafiltration membranes, pore blocking was identified as the largest contributor to the observed flux decline. The chronological sequence of blocking mechanisms was interpreted to depend on the size distribution and surface density of membrane pores. For salt-rejecting membranes, the flux decline during the earlier stages of filtration was attributed to either intermediate blocking of relatively more permeable areas of the membrane skin, or to the cake filtration in its early transient stages, or a combination of these two mechanisms. The findings emphasize the practical importance of the clear identification of, and differentiation between mechanisms of pore blocking and cake formation as determining the potential for the irreversible fouling of membranes and the efficiency of membrane cleaning.  相似文献   

4.
In desalination, effective pretreatment is the key to reduce membrane fouling that occurs during the seawater reverse osmosis (SWRO) process. However, it is difficult to compare the flux decline after different pretreatments using a small-scale reverse osmosis filtration unit. In this study, we successfully evaluated the effect of pretreatment on SWRO in terms of molecular weight distribution (MWD) of seawater organic matter (SWOM) after 20 h of SWRO operation. Microfiltration (MF), ultrafiltration (UF), ferric chloride (FeCl3) flocculation and powdered activated carbon (PAC) adsorption, were used as pretreatment. The effluents and the retentates after each pretreatment and 20 h of SWRO operation were characterized in terms of MWD.Although the normalized flux of SWRO showed similar flux decline (J/J0 = 0.17) with/without pretreatment, SWOM concentration in the retentates after different pretreatments was different in quantity and it increased linearly with time. The slope of the SWOM increase was 0.110, 0.096, 0.077 and 0.059 after MF, FeCl3 flocculation, UF and PAC adsorption pretreatments, respectively. MW peaks for the seawater used in this study consisted of 1200 Da (biopolymers), 950 Da (fulvic acids), 650 Da (hydrolysates of humic substances), 250 Da (low MW acids) and 90 Da (low MW neutrals and amphiphilics). FeCl3 flocculation preferentially removed 1200 Da (biopolymers), while PAC adsorption mostly removed 950 Da (fulvic acids). UF and NF removed only a marginal amount of relatively large organics, while RO removed the majority of organics. The intensity of 1200, 950, 650 and 250 Da MW in the RO retentates increased with the RO operation time. The organics of MW around 1200 Da (biopolymers) had a relatively low rate of increase with time compared with those of lower MW. This suggests that the SWOM of 1200 Da MW was preferentially retained on the membrane surface.  相似文献   

5.
Wine aroma represents one of the main properties that determines the consumer acceptance of the wine. It is different for each wine variety and depends on a large number of various chemical compounds. The aim of this study was to prepare red wine concentrates with enriched aroma compounds and chemical composition. For that purpose, Cabernet Sauvignon red wine variety was concentrated by reverse osmosis (RO) and nanofiltration (NF) processes under different operating conditions. Different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and temperature regimes (with and without cooling) were applied on Alfa Laval LabUnit M20 equipped with six composite polyamide RO98pHt M20 or NF M20 membranes. Higher pressure increased the retention of sugars, SO2, total and volatile acids and ethanol, but the temperature increment had opposite effect. Both membranes were permeable for water, ethanol, acetic acid, 4-ethylphenol and 4-ethylguaiacol and their concentration decreased after wine filtration. RO98pHt membranes retained higher concentrations of total aroma compounds than NF membranes, but both processes, reverse osmosis and nanofiltration, resulted in retentates with different aroma profiles comparing to the initial wine. The retention of individual compounds depended on several factors (chemical structure, stability, polarity, applied processing parameters, etc.).  相似文献   

6.
Countercurrent fermentation of rice straw and chicken manure to carboxylic acids was performed using a mixed culture of marine mesophilic microorganisms. To increase the digestibility of the biomass, rice straw, and chicken manure were pretreated with 0.1 g Ca(OH)2/g biomass. Fermentation was performed for 80% rice straw and 20% chicken manure at various volatile solid loading rates (VSLR) and liquid residence times (LRT). The highest acid productivity of 1.69 g/(L·d) occurred at a total acid concentration of 32.4 g/L. The highest conversion (0.69 g VS digested/g VS fed) and yield (0.29 g total acids/g VS fed) were at a total acid concentration of 25 g/L. A Continuum Particle Distribution Model of the process predicted the experimental total acid concentration and conversion results with an average error of 6.41% and 6.15%, respectively. Results show how total acid concentrations, conversions, and yields vary with VSLR and LRT in the MixAlco process.  相似文献   

7.
Hybrid organically bridged silica membranes have attracted considerable attention because of their high performances in a variety of applications. Development of robust reverse osmosis (RO) membranes to withstand aggressive operating conditions is still a major challenge. Here, a new type of microporous organosilica membrane has been developed and applied in reverse osmosis. Sol-gel derived organosilica RO membranes reject isopropanol with rejection higher than 95%, demonstrating superior molecular sieving ability for neutral solutes of low molecular weight. Due to the introduction of an inherently stable hybrid network structure, the membrane withstands higher temperatures in comparison with commercial polyamide RO membranes, and is resistant to water to at least 90 °C with no obvious changes in filtration performance. Furthermore, both an accelerated chlorine-resistance test and Fourier transform infrared analysis confirm excellent chlorine stability in this material, which demonstrates promise for a new generation of chlorine-resistant RO membrane materials.  相似文献   

8.
Using the MixAlco process, biomass can be converted into carboxylic acids, which can be chemically converted into mixed alcohol fuels. This study focused on the use of countercurrent fermentation to anaerobically convert sugarcane bagasse and chicken manure to mixed carboxylic acids using a mixed culture of mesophilic microorganisms from terrestrial and marine sources. Bagasse was pretreated with lime to increase digestibility. The continuum particle distribution model (CPDM) simulated continuous fermentors based on data collected from batch experiments. This model saves considerable time in determining optimum operating conditions. For an 80% bagasse/20% chicken manure fermentation with terrestrial inoculum at a volatile solids loading rate (VSLR) of 7.36 g/(L of liquid·d) and a liquid residence time (LRT) of 8.88 d, total carboxylic acid productivity, total acid selectivity, and yield were 2.49 g/(L of liquid·d), 0.581 g of total acid/g of VS digested, and 0.338 g of total acid/g of VS fed, respectively, at a concentration of 18.7 g of total acid/L. At the same VSLR and LRT, fermentation with marine inoculum gave higher total acid productivity, total acid selectivity, and yield than fermentation with terrestrial inoculum. For an 80% bagasse/20% chicken manure fermentation with marine inoculum at a VSLR of 3.83 g/(L of liquid·d) and an LRT of 12.1 d, total carboxylic acid productivity, total acid selectivity, and yield were 1.38 g/(L of liquid·d), 0.667 g of total acid/g of VS digested, and 0.359 g of total acid/g of VS fed, respectively, at a concentration of 16.2 g of total acid/L.  相似文献   

9.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

10.
A mixed solids waste (MSW) feedstock, comprising construction lumber waste (35% oven-dry basis), alm ond treeprunings (20%), wheat straw (20%), office waste paper (12.5%), and newsprint (12.5%), was converted to ethanol via dilute-acid pretreatment followed by enzymatic hydrolysis and yeast fermentation. The MSW was pretreated with dilute sulfuricacid (0.4% w/w) at 210°C for 3 min in a 4-L stea mexplosion reactor, then washed with water to recover the solubilized hemicellulose. The digestibility of water-washed, pretreated MSW was 90% in batch enzymatic hydrolysis at 66 FPU/g cellulose. Using an enzyme-recycle bioreactor system, greater than 90% cellulose hydrolysis was achieved at a net enzyme loading of about 10 FPU/g cellulose. Enzyme recycling using mebrane filtration and a fed-batch fermentation technique is a promising option for significantly reducing the cost of enzyme in cellulose hydrolysis. The hexosesugars were readily fermentable using a Saccharomyces cerevisiae yeast strain that was adapted to the hydrolysate. Solid residue after enzyme digestion was subjected to various furnace experiments designed to assess the fouling and slagging characteristics. Results of these analyses suggest the residue to be of a low to moderate slagging and fouling type if burned by itself.  相似文献   

11.
A fast and cost effective method was developed to extract and quantify residues of veterinary antimicrobial agents (antibiotics) in animal manure by liquid-liquid extraction and liquid chromatography-mass spectrometry. The compounds investigated include six sulfonamides, one metabolite, and trimethoprim. The method was performed without sample clean up. Recoveries from spiked manure slurry samples (spike level = 1 mg/kg) were as follows: sulfaguanidine (52%), sulfadiazine (47%), sulfathiazole (64%), sulfamethazine (89%), its metabolite N4-acetyl-sulfamethazine (88%), sulfamethoxazole (84%), sulfadimethoxine (51%), and trimethoprim (64%). Relative standard deviations of the recoveries were less than 5% within the same day and less than 20% between days. The limit of quantification was below 0.1 mg/kg liquid manure slurry for all compounds and calibration curves obtained from extracts of spiked samples were linear up to a level of 5 mg/kg liquid manure, except for trimethoprim (0.01-0.5 mg/kg). Analysis of six grab samples taken in Switzerland from manure pits on farms where medicinal feed had been applied revealed total sulfonamide concentrations of up to 20 mg/kg liquid manure.  相似文献   

12.
In this research, an innovative Poly (vinyl alcohol) (PVA) reverse osmosis (RO) membrane with exceptional attributes was fabricated. Graphene Oxide (GO) nanosheets and Pluronic F-127 were infused within crosslinked PVA to fabricate thin film mixed matrix membranes. The newly synthesized membranes were evaluated in terms of several parameters like surface roughness, hydrophilicity, salt rejection, water permeability, Chlorine tolerance and anti-biofouling property, utilizing a dead-end RO filtration unit. Typical characterization techniques were used to assess the characteristics of the membranes. These include SEM, AFM, contact angle measurements and mechanical strength analysis. The conjugation of Pluronic F-127 and GO enhanced the overall performance of the membranes. The modified membranes surfaces had less roughness and higher hydrophilicity in comparison with the unmodified ones. This research showed that membranes that contained 0.08 wt% and 0.1 wt% GO exhibited superior selectivity, mechanical strength, Chlorine tolerance and anti-biofouling property. The truly significant outcome to evolve from this investigation is that improvements have been accomplished while PVA was used as a stand-alone RO layer without the use of any substrate. This study showed that crosslinking of PVA and modifying it with proper fillers overcame the common PVA downsides, primarily swelling and rupture under exceptionally high pressure.  相似文献   

13.
Linear triphenol H3[RO3] (2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-R-phenol; R = Me, tBu) was found to undergo selective mono-deprotonation and mono-O-methylation. Deprotonation of H3[RO3] with 1 equiv of nBuLi resulted in the formation of Li{H2[RO3]}(Et2O)2 (R = Me (1a), tBu (1b)), in which the central phenol unit was lithiated. Treatment of H3[RO3] with methyl p-toluenesulfonate in the presence of K2CO3 in CH3CN gave the corresponding anisol-diphenol H2[RO2O] (2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-R-anisole; R = Me (2a), tBu (2b)). Reaction of H2[RO2O] with 2 equiv of nBuLi gave the dilithiated derivatives Li2[RO2O]. The lithium salts were reacted with ZrCl4 in toluene/THF to obtain the dichloride complex [RO2O]ZrCl2(thf) (R = Me (3a), tBu (3b)). 3b underwent dimerization along with a loss of THF to generate {[tBuO2O]ZrCl2}2 (4), whereas 4 was dissolved in THF to regenerate the monomer 3b. Alkylation of 3 with MeMgBr, PhCH2MgCl, and Me3SiCH2MgCl gave [MeO2O]ZrMe2(thf) (5), [RO2O]Zr(CH2Ph)2 (R = Me (6a), tBu (6b)), and [tBuO2O]Zr(CH2SiMe3)2 (7), respectively. Reaction of 3b with LiBHEt3 produced the hydride-bridged dimer [Li2(thf)4Cl]{[tBuO3]Zr}2(micro-H)3} (8), in which demethylation of the dianionic [tBuO2O] ligand took place to give the trianionic [tBuO3] ligand. The X-ray crystal structures of 1b, 2a, 3a, 4, 6a, and 7 were reported.  相似文献   

14.
Hydrolysis is the heart of the lignocellulose-to-bioethanol conversion process. Using enzymes to catalyze the hydrolysis represents a more environmentally friendly pathway compared to other techniques. However, for the process to be economically feasible, solving the product inhibition problem and enhancing enzyme reusability are essential. Prior research demonstrated that a flat-sheet membrane bioreactor (MBR), using an inverted dead-end filtration system, could achieve 86.7% glucose yield from purified cellulose in 6 h. In this study, the effectiveness of flat-sheet versus radial-flow MBR designs was assessed using real, complex lignocellulose biomass, namely date seeds (DSs). The tubular radial-flow MBR used here had more than a 10-fold higher membrane surface area than the flat-sheet MBR design. With simultaneous product separation using the flat-sheet inverted dead-end filtration MBR, a glucose yield of 10.8% from pretreated DSs was achieved within 8 h of reaction, which was three times higher than the yield without product separation, which was only 3.5% within the same time and under the same conditions. The superiority of the tubular radial-flow MBR to hydrolyze pretreated DSs was confirmed with a glucose yield of 60% within 8 h. The promising results obtained by the novel tubular MBR could pave the way for an economic lignocellulose-to-bioethanol process.  相似文献   

15.
The present work is concerned with the preparation and some properties of novel environment-sensitive membranes. A porous poly (vinylidene fluoride) membrane (pore size 0.22 μm) was pretreated by air plasma; subsequently, hydrophilic monomers were graft polymerized on the treated surface. Since the filtration characteristics of the obtained membranes reflect the configuration of the grafted chains, these can be changed reversibly from ultrafilter to microfilter and vice versa in response to the membrane environment such as pH, solvent composition and ionic species. Grafted chains act as a sensor and a valve to regulate filtration characteristics. The poly(acrylic acid) grafted membrane for example is very sensitive to environmental pH. In the pH region of 1 to 5, the filtration rate sharply decreased with increasing solution pH, the filtration rate at pH 1.4 being about ten times higher than at pH 5.2. Together with this decrease in filtration rate, the membrane gained the ability of ultrafiltration of macromolecular solutes such as dextran (Mw = 2,000,000) and albumin (Mw = 67,000). In the pH region of 5.2 to 7.5, filtration rate and solute rejection did not depend on pH. The pH sensitivity is reversible and reproducible. Because of characteristics such as the drastic alteration in filtration rate and solute separation properties and the quick response to solution conditions, the environment-sensitive membranes developed here may find applications in various areas of membrane technology.  相似文献   

16.
In Saudi Arabia, more than 335,000 tons of cow manure is produced every year from dairy farming. However, the produced cow manure is usually added to the agricultural soils as raw or composted manure; significant nitrogen losses occur during the storage, handling, and application of the raw manure. The recovery of ammonia from cow manure through thermochemical treatments is a promising technique to obtain concentrated nitrogen fertilizer and reducing nitrogen losses from raw manure. However, the byproduct effluents from the recovery process are characterized by different chemical properties from the original raw manure; thus, its impact as soil amendments on the soil carbon and nitrogen dynamics is unknown. Therefore, a 90-day incubation experiment was conducted to study the impact of these effluents on CO2 efflux, organic C, microbial biomass C, available NH4+, and NO3 when added to agricultural soil. In addition to the two types of effluents (produced at pH 9 and pH 12), raw cow manure (CM), composted cow manure (CMC), cow manure biochar (CMB), and control were used for comparison. The application of CM resulted in a considerable increase in soil available nitrogen and CO2 efflux, compared to other treatments. Cow manure biochar showed the lowest CO2 efflux. Cumulative CO2 effluxes of cow manure effluents were lower than CM; this is possibly due to the relatively high C:N ratio of manure effluent. The content of P, Fe, Cu, Zn, and Mn decreased as incubation time increased. Soil microbial biomass C for soil treated with cow manure effluents (pH 12 and 7) was significantly higher than the rest of the soil amendments and control.  相似文献   

17.
The prevention of fouling of polysulphone ultrafiltration membranes, used for the purification of natural brown water, was investigated by pretreating the membranes prior to filtration. Polysulfone membranes were pretreated by commercial nonionic surfactants Triton X-100 and Pluronic F108. Specific characterisation techniques, developed by Maartens et al. (1998) and Jucker and Clarke, (1994), were used to determine and compare the effects induced by the adsorption of natural organic matter on the permeability of untreated as well as surfactant treated capillary ultrafiltration membranes. The extent of foulant adsorption and the quality of the resultant permeate solutions were determined by ultraviolet visible-light spectroscopy. The findings of this investigation provides information of importance for the operation of future natural brown water ultrafiltration plants. Copyright 2000 Academic Press.  相似文献   

18.
Osmotic backwash mechanism of reverse osmosis membranes   总被引:1,自引:1,他引:0  
A new osmotic backwash (BW) model for reverse osmosis (RO) membranes was developed for conditions of no applied pressures across the membrane. This analytical model has one adjustable parameter representing the coefficient of a linearized convection term in the general convection–diffusion equation. An experimental RO/BW system was used for 12 data sets to verify the proposed BW model and illustrate its predictability. Results show deviations of the model from the data within a range of 5–15%. The described dilution mechanism of the feed concentration polarization (CP) layer is based on RO originated concentrated layer detachment from the membrane surface followed by its gradual dilution.The understanding gained in this research may be applied to automatic RO/BW cleaning cycles. A dominant RO parameter of the BW process is the RO initial driving force—the concentration difference across the membrane. Other RO process parameters – applied pressure and feed flow rate – have lesser effects. Both theoretical and experimental methods provide quantitative relationships between RO and BW variables that enable an understanding and control of the BW process.  相似文献   

19.
Several batch experiments were conducted on the anaerobic co-digestion of dairy cow manure (DCM) with three harvest residues (HR) (soybean straw, sunflower stalks, and corn stover). The influence of thermal pretreatment of HR on biogas production was investigated, where the HR were thermally pretreated at two different temperatures: T = 121 °C and T = 175 °C, during t = 30 and t = 90 min, respectively. All anaerobic co-digestion batch experiments were performed simultaneously under thermophilic regime, at T = 55 °C. Biogas and methane yields were significantly improved in experiments performed with corn stover thermally pretreated at 175 °C for 30 min (491.37 cm3/g VS and 306.96 cm3/g VS, respectively), if compared to experiments performed with untreated corn stover. The highest VS and COD removal rates were also observed in the same group of experiments and were 34.5 and 50.1%, respectively. The highest biogas and methane yields with soybean straw (418.93 cm3/g VS and 261.44 cm3/g VS, respectively) were obtained when soybean straw pretreated at 121 °C during 90 min. The highest biogas and methane yields with sunflower stalk (393.28 cm3/g VS and 245.02 cm3/g VS, respectively) were obtained when sunflower stalk was pretreated at 121 °C during 90 min.  相似文献   

20.
Martin MA  Del Castillo B  Prados P 《Talanta》1993,40(11):1719-1723
13-Hydroxyacenaphtho[1,2-b]quinolizinium bromide (13-HQBr)was selected as a fluorescence indicator to determine basic compounds in non-aqueous media. This compound possesses an acidic phenolic hydroxyl group. It presents varying absorption (ROH, 408, 430 nm; RO(-) 456, 478 nm) and excitation spectra (ROH, 425 nm; RO, 471 nm) depending on the pH of the media, but the same emission fluorescence spectrum (ROH = RO(-), 526 nm) at different pH in buffered aqueous solutions. However, in acidic non-aqueous media (acetic, formic and trifluoroacetic acids), it can be observed that the fluorescence emission spectra differ for the ionized (lambda(em) = 530 nm) and non-ionized (lambda(em) = 440, 470 nm) forms. The fluorescence intensity at the characteristic peaks depends on the acid-base equilibria in the ground and excited states. Therefore, this property could be used to evaluate the concentration of basic compounds, showing a good linearity range between fluorescence intensity and basic sample concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号