首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In2S3 layers have been grown by close-spaced evaporation of pre-synthesized In2S3 powder from its constituent elements. The layers were deposited on glass substrates at temperatures in the range, 200–350 °C. The effect of substrate temperature on composition, structure, morphology, electrical and optical properties of the as-grown indium sulfide films has been studied. The synthesized powder exhibited cubic structure with a grain size of 63.92 nm and S/In ratio of 1.01. The films grown at 200 °C were amorphous in nature while its crystallinity increased with the increase of substrate temperature to 300 °C. The films exhibited pure tetragonal β-In2S3 phase at the substrate temperature of 350 °C. The surface morphological analysis revealed that the films grown at 300 °C had an average roughness of 1.43 nm. These films showed a S/In ratio of 0.98 and a lower electrical resistivity of 1.28 × 103 Ω cm. The optical band gap was found to be direct and the layers grown at 300 °C showed a higher optical transmittance of 78% and an energy band gap of 2.49 eV.  相似文献   

2.
A cold (Trot<10 K) beam of N2 with an initial translational energy of 0.40 eV strikes an Ni(111) surface at surface temperatures from 300 to 873 K at several incident angles from 15 to 60°. The rotational energy and angular distributions of the scattered molecules are probed using (2+1) resonance-enhanced multiphoton ionization. Molecules scattered in the specular direction have mean rotational energies that are independent of surface temperature, whereas those scattered at angles far from the specular show a dependence on surface temperature, caused likely by multiple collisions with the surface before escape. A rotational rainbow, seen in systems such as CO–Ni(111) and N2–Ag(111), is not seen in this system. For molecules that scatter close to the specular direction, approximately 10% of the initial translational energy is converted into rotational energy of the scattered N2. For surface temperatures above room temperature, the angular distributions indicate that molecules that scatter into low-J states also tend to exit in a broad peak (10–20° FWHM) near the specular, and this peak is broadened with increasing incident angle. The molecules that scatter into high-J states have a much broader distribution, indicating that they are trapped rotationally during the initial collision and suffer multiple collisions before leaving the surface.  相似文献   

3.
Carbon nitride thin films were deposited on Si(1 0 0) substrate by microwave plasma-enhanced chemical vapor deposition (PECVD). Hexamethylenetetramine (HMTA) was used as carbon and nitrogen source while N2 gas was used as both nitrogen source and carrier gas. The sp3-bonded C---N structure in HMTA was considered significantly in the precursor selection. X-ray diffraction analysis indicated that the film was a mixture of crystalline - and β-C3N4 as well as graphitic-C3N4 and β-Si3N4 which were not easily distinguished. Raman spectroscopy also suggested the existence of - and β-C3N4 in the films. X-ray photoelectron spectroscopy study indicated the presence of sp2- and sp3-bonded C---N structures in the films while sp3C---N bonding structure predominated to the sp2 C---N bonding structure in the bulk composition of the films. N was also found to be bound to Si atoms in the films. The product was, therefore, described as CNx:Si, where x depends on the film depth, with some evidences of crystalline C3N4 formation.  相似文献   

4.
The temperature dependence of the electrical resistivity of amorphous Co80−xErxB20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum Tmin. In addition, the resistivity shows quadratic temperature behavior in the interval Tmin<T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity shows a change in structural short range occurring in the composition range 8–9 at%.  相似文献   

5.
La0.67Sr0.33MnO3−δ (LSMO) and Pr0.7Ca0.3MnO3−δ (PCMO) multilayer epitaxial films, which were fabricated with different LSMO and PCMO layer thickness on LaAlO3 single crystal substrates of (0 0 1) orientation by a direct current magnetron sputtering technique, were studied further, after the structure, magnetoresistance effect and magnetic properties of LSMO/PCMO/LSMO (LPL) trilayer epitaxial films were systemically studied. The superlattice structures of multilayer films were observed according to the diffraction peaks of X-ray diffraction patterns at small angles. The metal–insulator transition temperature (TP) and peak resistivity (ρmax) obviously changed when we altered the thickness of PCMO middle layer and the intra-field related with the thickness of those layers and their interaction. Considering the effect of the distribution of electrical field and current, and the interaction among the layers of LSMO and PCMO, an effective fact n* was introduced to replace n (the number of layer). All the calculated values of ρ (the resistivity of multilayer films) accorded with the experimental values.  相似文献   

6.
We report normal-state and superconducting properties of the clathrate-type silver-oxide Ag6O8AgHF2. We present electrical resistivity, DC- and AC-susceptibility and specific-heat measurements of single crystalline Ag6O8AgHF2. In the normal state, Ag6O8AgHF2 exhibits metallic conductivity and a phase transition near 110 K, possibly a structural phase transition as observed in the related compound Ag6O8AgNO3. The onset of superconductivity of our samples is observed around 1.2–1.5 K, and the HT phase diagram is determined for the first time. The upper critical field Hc2(0) is estimated to be about 2000–2200 Oe and the coherence length ξGL(0) to be 40 nm.  相似文献   

7.
Desorption of metastable particles from layered and mixed films, composed of N2 and Kr, is induced by the impact of 6–50 eV monoenergetic electrons. From yield functions and time-of-flight analysis of the metastable particles emanating from these films, N*2 and Kr* are identified as the desorbing species. Basic mechanisms responsible for their desorption are discussed. It is suggested that the desorption of Kr* arises from dissociation of transitory [Kr·N2]* excimers. The desorption of N*2 can arise from cavity expulsion, intramolecular vibrational energy transfer (with or without prior electronic excitation energy transfer from Kr excitions to N2) and the dissociation of [Kr·N2]* excimers.  相似文献   

8.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

9.
We present extensive measurements of anisotropic resistivity on Bi2Sr2CuOy crystals grown from melts with different Bi/Sr ratios and doped with Pb. We find that the temperature variation of the c-axis resistivity c(T) is correlated with the in-plane resistivity ab. Depending on the starting compositions, the normal-state in-plane resistivity ab can either show localized conduction at low temperature or be metallic (dab/dT < 0) in the whole temperature range. Correspondingly, a change of the T dependence of c from nonmetallic (dc/dT < 0) in the whole measured temperature range (4.2–300 K) to a mixed (dc/dT < 0 at low T but dc/dT> 0 at high T) conduction is observed. In accompany, the magnitude of c at low T decreases by about two orders. We have quantified the trend of the c(T) and examined some current proposals concerning the out-of-plane transport.  相似文献   

10.
Silicon nanocrystals have been synthesized in SiO2 matrix using Si ion implantation. Si ions were implanted into 300-nm-thick SiO2 films grown on crystalline Si at energies of 30–55 keV, and with doses of 5×1015, 3×1016, and 1×1017 cm−2. Implanted samples were subsequently annealed in an N2 ambient at 500–1100°C during various periods. Photoluminescence spectra for the sample implanted with 1×1017 cm−2 at 55 keV show that red luminescence (750 nm) related to Si-nanocrystals clearly increases with annealing temperature and time in intensity, and that weak orange luminescence (600 nm) is observed after annealing at low temperatures of 500°C and 800°C. The luminescence around 600 nm becomes very intense when a thin SiO2 sample is implanted at a substrate temperature of 400°C with an energy of 30 keV and a low dose of 5×1015 cm−2. It vanishes after annealing at 800°C for 30 min. We conclude that this luminescence observed around 600 nm is caused by some radiative defects formed in Si-implanted SiO2.  相似文献   

11.
Ti substituted BiFe1−xTixO3+δ films have been prepared on indium–tin oxide (ITO)/glass substrates by the sol–gel process. The films with x=0.00–0.20 were prepared at an annealing temperature of 600 °C. X-ray diffraction patterns indicate that all films adopt R3m structure and the films with x=0 and 0.10 show pure perovskite phase. Cross-section scanning shows the thickness of the films is about 300 nm. Through 0.05 Ti substitution, the 2Pr increases to 8.30 μC/cm2 from 2.12 μC/cm2 of the un-substituted BiFeO3 film and show enhanced ferroelectricity at room temperature. The 2Pr values are 2.63 and 0.44 μC/cm2 for the films with x=0.01 and 0.2, respectively. Moreover, the films with x=0.05 and 0.10 show enhanced dielectric property since the permittivity increases near 150 at the same measuring frequency. Through the substitution of Ti, the leakage conduction is reduced for the films with x=0.05–0.20.  相似文献   

12.
The polycrystalline sample of LiFe1/2Ni1/2VO4 was prepared by a standard solid-state reaction technique and confirmed by X-ray diffractometry. LiFe1/2Ni1/2VO4 has orthorhombic crystal structure whose dielectric and electric modulus properties were studied over a wide frequency range (100 Hz–1 MHz) at different temperatures (296–623 K) using a complex impedance spectroscopy (CIS) technique. The frequency and temperature dependence of dielectric constant (εr) and tangent loss (tan δ) of LiFe1/2Ni1/2VO4 are studied. The variation of εr as a function frequency at different temperatures exhibits a dispersive behavior at low frequencies. The variation of the εr as a function of temperature at different frequencies shows the dielectric anomaly in εr at 498 K with maximum value of dielectric constant 274.49 and 96.86 at 100 kHz and 1 MHz, respectively. Modulus analysis was carried out to understand the mechanism of the electrical transport process, which indicates the non-exponential type of conductivity relaxation in the material. The activation energy calculated from electric modulus spectra is 0.38 eV.  相似文献   

13.
Thin films of perovskite manganite, with nominal composition La0.5Ca0.5MnO3, have been prepared by pulsed laser deposition on (1 0 0) SrTiO3, (1 0 0) LaAlO3, (1 0 0) Si and YSZ/CeO2-buffered (1 0 0) Si substrates. Structural and electrical characterisation was performed on the films. The magneto-transport properties of all the thin films depart from the bulk behaviour. The LCMO film grown on buffered Si shows an insulator–metallic transition around 130–150 K while the one deposited directly on Si displayed a similar behaviour under a melting field of 1 T. However, that transition is absent in the films grown on LAO and STO. We suggest that appropriate stress values induced by the substrate favour the formation of metallic percolative paths.  相似文献   

14.
We have measured the integrated band intensities of the ν9 and ν11 bands of N2O4 which are observed around 1757 and 1261 cm-1, respectively. By varying temperature and pressure, we have obtained: Sband9) = 9.60(130), 9.10(24), 8.80(66) and Sband11)= 5.93(64), 5.70(21) and 5.33(46) (in 10-17 cm/molecule) at 293.15 (60), 277.25 (60) and 261.65 (60) K, respectively.  相似文献   

15.
U14Au51 and UAu2 were recently demonstrated the two correct phases stable at room temperature in the U-Au system. Magnetic susceptibility (1.5–300 K) and electrical resistivity (10–800 K) measurements were performed in samples of both phases. Magnetic susceptibility temperature behaviour gives evidences of an antiferromagnetic transition at 23 K in U14Au51, whereas no magnetic order is detected in UAu2. In both compounds, Kondo-like logarithmic behaviour in electrical resistivity temperature trend is found. Effects already observed in U2Zn17 and UAl2 are respectively found in U14Au51 and UAu2. Possible “heavy fermion” properties of these compounds are discussed.  相似文献   

16.
High-Tc superconducting thin films have been deposited in situ by means of a plasma assisted metal-organic chemical vapour deposition (PAMOCVD) process on LaAlO3. An EMCORE high-speed rotating disc reactor was used to deposit the films at a substrate temperature of 600°C to 800°C. The system is equipped with a (remote) 120 W microwave plasma generator. The oxidising plasma gas is N2O and/or O2 while Ar was used as the inert carrier gas for the different metal-organics. The influence of different process parameters (such as the temperatures of the metal-organics, substrate temperature, and plasma gas composition) on the superconductive properties and on the morphology of the films was investigated. Surface morphology and composition were studied by SEM/EDX or EPMA, and AC susceptibility measurements were used to investigate the superconductive properties (Tc and Jc). X-ray diffraction measurements indicated that single-phase YBa2Cu3O7−x films were epitaxially grown with the 00l orientation perpendicular to the substrate surface. The critical temperature (Tc) of the films is about 90 K and the critical current density (Jc) is higher than 106 A/cm2 at 77 K and zero field.  相似文献   

17.
Thin Ca films were evaporated on Si(1 1 1) under UHV conditions and subsequently annealed in the temperature range 200–650 °C. The interdiffusion of Ca and Si was examined by ex situ Auger depth profiling. In situ monitoring of the Si 2p core-level shift by X-ray photoemission spectroscopy (XPS) was employed to study the silicide formation process. The formation temperature of CaSi2 films on Si(1 1 1) was found to be about 350 °C. Epitaxial growth takes place at T≥400 °C. The morphology of the films, measured by atomic force microscopy (AFM), was correlated with their crystallinity as analyzed by X-ray diffraction (XRD). According to measurements of temperature-dependent IV characteristics and internal photoemission the Schottky-barrier height of CaSi2 on Si(1 1 1) amounts to qΦBn=0.25 eV on n-type and to qΦBp=0.82 eV on p-type silicon.  相似文献   

18.
Atomic layer deposition of Cr2O3 thin films from CrO2Cl2 and CH3OH on amorphous SiO2 and crystalline Si(1 0 0) and -Al2O3() substrates was investigated, and properties of the films were ascertained. Self-limited growth with a rate of 0.05–0.1 nm/cycle was obtained at substrate temperatures of 330–420 °C. In this temperature range epitaxial eskolaite was formed on the -Al2O3() substrates. The predominant crystallographic orientation in the epitaxial films depended, however, on the growth temperature and film thickness. Sufficiently thick films grown on the SiO2 and Si(1 0 0) substrates contained also the eskolaite phase, but thinner films deposited at 330–375 °C on these substrates were amorphous. The growth rate data of films with different phase composition allowed a conclusion that the crystalline phase grew markedly faster than the amorphous phase did. The amorphous, polycrystalline and epitaxial films had densities of 4.9, 5.1 and 5.1–5.3 g/cm3, respectively.  相似文献   

19.
Superconducting samples with nominal composition Bi1.6Pb0.4Sr2Ca2Cu3Oδ were prepared by the conventional solid-state reaction technique. The samples have been characterized by X-ray diffraction, dc electrical resistivity, ac magnetic susceptibility and thermal conductivity. The X-ray diffraction studies were done at room temperature and the lattice constants of the material were determined by indexing all the peaks. All the above measurements show that, there exists two phases i.e. high-Tc (2 2 2 3) and low-Tc (2 2 1 2). The information obtained from dc electrical resistivity data agrees with ac magnetic susceptibility measurements. The onset temperature Tc (onset) and zero resistivity temperature Tc (R = 0) of the samples remains within the temperature 120 ± 1 K and 103 ± 1 K. Thermal conductivity has been measured with a transient plane source (TPS) technique in the temperature range 77–300 K. The estimation of the electrical resistivity change due to scattering by phonons and impurities has been discussed. An increase in thermal conductivity is observed above and below Tc (R = 0). The electron–phonon scattering time, phonon-limited mobility and the size of the electron–phonon constant are also calculated. Wiedemann–Franz law is applied to gain prediction about the magnitude of electronic and phonon contribution to the total thermal conductivity of the samples. It is observed that heat is mainly conducted by the phonons in this system.  相似文献   

20.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号