首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
For the prototypical dyad (TCNE2)-*, previous in vacuo calculations indicate that sizable distortion of the equilibrium gas-phase structure may be required to reduce the donor/acceptor electronic coupling element (HDA) to the solution-phase experimental estimates. We employ the polarizable continuum model (PCM) to simulate the solvation environment for several polar solvents, finding noticeable structure change associated with the promotion of charge localization due to solvation. We have extended the counterpoise (CP) correction procedure so as to include fragment relaxation energies within the PCM model, and it would be of interest to incorporate this approach into schemes for optimizing coordinates on CP-corrected energy surfaces. The calculations include face-to-face encounter geometries as well as several lateral and twist distortions of the face-to-face structures. In proceeding from vacuum to solution, the calculated stabilization energy is reduced from -18 to -3 kcal/mol, and the calculated energy surface becomes flatter, with a somewhat larger minimum-energy separation of the monomer units (rDA). The corresponding minimum-energy structures are, respectively, delocalized and charge-localized. Using TD-DFT, spin-projected MP2 (PUMP2), and state-averaged two-configuration SCF (SA-TCSCF) calculations to evaluate HDA for symmetric encounter complex geometries (models for transition-state structures) indicates that HDA has comparable magnitude in the gas phase and in solution for a given dimer structure. SA-TCSCF calculations comparing HDA based on symmetric charge-delocalized structures and their asymmetric (minimum-energy) charge-localized counterparts (at a given rDA) yield very similar values. Even with account taken of the energetically accessible configurations probed by the PCM calculations, the HDA values remain significantly higher than the experimental estimates inferred from solution spectra and assumption of rDA based on crystal data. Clearly, additional calculations based on molecular-level solvent models would be of value in helping to characterize the intermolecular structures accessible to the encounter complex in polar solution.  相似文献   

2.
3.
The (TCNE)(2)(2)(-) dimer dianion formed by connecting two TCNE(-) anions via a four-center, two-electron pi-orbital bond is studied using ab initio theoretical methods and a model designed to simulate the stabilization due to surrounding counterions. (TCNE)(2)(2)(-) is examined as an isolated species and in a solvation environment representative of tetrahydrofuran (THF) solvent. The intrinsic strength of this novel bond and the influences of internal Coulomb repulsions, of solvent stabilization and screening, and of counterion stabilization are all considered. The geometry, electronic and thermodynamic stabilities, electronic absorption spectra, and electron detachment energies of this novel dianion are examined to help understand recent experimental findings. Our findings lead us to conclude that the (TCNE)(2)(2)(-) dianion's observation in solid materials is likely a result of its stabilization by surrounding countercations. Moreover, our results suggest the dianion is geometrically metastable in THF solution, with a barrier to dissociation into two TCNE(-) anions that can be quickly surmounted at room temperature but not at 77 K. This finding is consistent with what is observed in laboratory studies of low- and room-temperature solutions of salts containing this dianion. Finally, we assign two peaks observed (at 77 K in methyl-THF glass) in the UV-vis region to (1) electronic transitions involving the four-center orbitals and (2) detachment of an electron from the four-center pi-bonding orbital to generate (TCNE)(2)(-) + e(-).  相似文献   

4.
The influence of the solvent on the structure and IR spectrum of the [Fe(CN)(5)NO](2)(-) ion is investigated by using gradient corrected density functional theory. IR spectra are also measured on different solvents and the results obtained are compared with the predicted ones. We have treated the solvent effects with a continuum model, based on the Onsager's reaction field approach; in order to mimic strong specific interactions, calculations were also performed on the complex protonated at the cyanide trans to the nitrosyl group. The reaction field calculations predict only qualitatively the most important observed trends, e.g., the shifts in the nitrosyl stretching wavenumber, but fail in accounting quantitatively for the differences between the spectra in water and acetonitrile. The possible role of specific interactions is consistently accounted for by interpreting the experimental shifts of the NO stretching wavenumber nu(NO), as well as the visible absorption energies, when changing the Lewis acidity of the solvent, as measured by the Gutmann's acceptor number. Ligand population analysis was performed to relate the solvent effects with the sigma donor and pi acceptor behavior of cyanide and nitrosyl ligands. The significance of nu(NO) shifts as a result of changes in the medium is discussed in view of the physiological relevance of transition-metal nitrosyl chemistry.  相似文献   

5.
A long, two-electron ten-center (2e(-)/10c) [8 carbon plus 2 oxygen] bond in diamagnetic dimers of radical-anion tetracyano-1,4-benzoquinoneide (cyanil, [Q] (-)), [Q](2)(2-), is described by B3LYP and CASSCF(2,2)/MCQDPT calculations.  相似文献   

6.
The structures and magnetic properties of two products that result from the reactions of [Mn(TPA)(CH3CN)2](ClO4)2, TPA=tris(2-pyridylmethyl)amine and potassium tetracyanoethylenide, KTCNE, are reported. [Mn(TPA)(TCNE)]2[mu2-(TCNE)2] (1) and [Mn(TPA)(micro4-C4(CN)8)0.5].ClO4 (2) are obtained by using two different ratios of the initial reactants. Each was intended to possess two or more cis-TCNE radical anions (TCNE*/-) as ligands. 1 is a dinuclear species that crystallizes in the triclinic system in the space group P, with a=10.4432(17), b=12.2726(16), and c=13.708(2) A; alpha=88.505(12), beta=75.560(14), and gamma=87.077(12) degrees; V=1698.9(4) A3; and Z=1 and features two metal centers each with three nearly orthogonal TCNE*/- ligands. However, the three TCNE*/- ligands are all dimerized via the formation of four-center, two-electron bonds: two bridge the two Mn(II) centers, and a third TCNE*/- ligand forms an intermolecular bond to another equivalent TCNE*/-. 2 crystallizes in the tetragonal system in the space group P42212, with a=17.170(3), b=17.170(3), and c=17.1837(6) A; V=5065.9(13) A3; and Z=8. It consists of a ribbon-like coordination polymer containing the previously observed but still relatively rare octacyanobutyl dianion. The [C4(CN)8]2- anion is derived from the dimerization of two TCNE radical anions via the formation of a new sigma bond, and each anion bridges four Mn(II) centers. Both 1 and 2 display magnetic behavior consistent with only weak antiferromagnetic coupling between the high-spin d5 Mn(II) in which the TCNE*/- are rendered diamagnetic through dimerization.  相似文献   

7.
8.
[Fe(TCNE)(NCMe)2][FeCl4] is isolated from the reaction of TCNE and FeCl2(NCMe)2 and orders as a ferrimagnet below 90 K and is the initial member of a new class of magnets. It is the first metal-TCNE magnet with direct bonding between metal ion and [TCNE]*- whose structure has been determined, and it possesses a novel planar mu4-[TCNE]*- spin coupling unit bonded to four FeII's, with an axial pair of MeCNs. The [FeIIICl4]- anion occupies sites between the [FeII(TCNE*-)(NCMe)2]+ layers. [Fe(TCNE)(NCMe)2][FeCl4] has a coercive field of 1730 Oe and a remnant magnetization of 7500 emuK/mol at 50 K.  相似文献   

9.
The dimerization of formamide (FMA) has been investigated by matrix isolation spectroscopy, static ab initio calculations, and ab initio molecular dynamics (AIMD) simulations. Comparison of the experimental matrix IR spectra with the ab initio calculations reveals that two types of dimers A and C are predominantly formed, with two and one strong NH...O hydrogen bonds, respectively. This is in accordance with previously published experiments. In addition, there is also experimental evidence for the formation of the thermally labile dimer B after deposition of high concentrations of FMA in solid xenon. The AIMD simulations of the aggregation process show that in all cases dimer C is initially formed, but rearrangement to the more stable doubly hydrogen-bonded structures A or B occurs for a fraction of collisions on the sub-picosecond time scale.  相似文献   

10.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

11.
1 INTRODUCTION There has been great and considerable interest in the study of copper nitrite complexes because they are relevant to the study of copper-containing enzymes involved in the denitrification process[1]; in particular, copper-nitrite complexes are potentially relevant to the nitrite reductases[2] (the enzyme from Achromobacter Cycloclastes) which convert NO2- to NO and/or N2O. Many attempts have been made to synthesize a variety of copper-nitrite complexes, in which the n…  相似文献   

12.
1 INTRODUCTION There has been increasing interest of Cu(II) and phenanthroline complexes in the field of coor- dination chemistry[1~4]. At the same time, nitronyl nitroxide radicals have played a prominent role in the design and construction of molecula…  相似文献   

13.
The crystal structure of the title complex with the stoichiometric formula [Cu(PTA)(Phen)2](p-MBA)(H6O) (Phen=1,10-phenanthroline, PTA=terephthalic acid, p-MBA=p-toluic acid) has been determined by single-crystal X-ray diffraction. The crystal (C48H40CuN4O10, Mr=896.38) belongs to the monoclinic space group C2/c, with the following crystallographic parameters: a=1.778 6(3) nm, b=1.912 5(3) nm, c=1.389 9(2) nm, β=114.686(2)°, V=4.295 7(12) nm3, Dc=1.386 g·cm-3, Z=4, μ(Mo Kα)=0.574 mm-1, F(000)=1 860, final GooF=1.019, R=0.054 0, wR=0.148 3 for 2 644 observed reflections (I>2σ(I)). The crystal structure shows that the copper(Ⅱ) ion is coordinated with two oxygen atoms from one terephthalic acid molecule and four nitrogen atoms from two 1,10-phenanthroline molecules, forming a distorted octahedral coordination geometry. The cyclic voltametric behavior of the complex is also reported. CCDC: 298809.  相似文献   

14.
The reaction of tetracyanoethylene (TCNE) and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) with Fe(CO)(5) leads to formation of magnetically ordered materials of Fe[TCNE](2) (T(c) = 100 K) and Fe[TCNQ](2) (T(c) = 35 K) composition, respectively. In contrast, the reaction with 1,2-dichloro-5,6-dicyanobenzoquinone (DDQ) leads to a paramagnetic material.  相似文献   

15.
Propofol (2,6-di-isopropylphenol) is probably the most widely used general anesthetic. Previous studies focused on its complexes containing 1 and 2 water molecules. In this work, propofol clusters containing three water molecules were formed using supersonic expansions and probed by means of a number of mass-resolved laser spectroscopic techniques. The 2-color REMPI spectrum of propofol[middle dot](H(2)O)(3) contains contributions from at least two conformational isomers, as demonstrated by UV/UV hole burning. Using the infrared IR/UV double resonance technique, the IR spectrum of each isomer was obtained both in ground and first excited electronic states and interpreted in the light of density functional theory (DFT) calculations at M06-2X/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The spectral analysis reveals that in both isomers the water molecules are forming cyclic hydrogen bond networks around propofol's OH moiety. Furthermore, some evidences point to the existence of isomerization processes, due to a complicated conformational landscape and the existence of multiple paths with low energy barriers connecting the different conformers. Such processes are discussed with the aid of DFT calculations.  相似文献   

16.
The fusion of the sp3‐hybridized parent diamondoid adamantane with the sp2‐hybridized pyrene results in a hybrid structure with a very large dipole moment which arises from bending the pyrene moiety. Presented herein is the synthesis, study of the electronic and optical properties, as well as the dynamic behavior of this new hydrocarbon.  相似文献   

17.
18.
Mn(II)(TCNE)I(OH(2)) was isolated from the reaction of tetracyanoethylene (TCNE) and MnI(2)(THF)(3), and has a 2-D structure possessing an unusual, asymmetric bonded μ(4)-[TCNE]˙(-). Direct antiferromagnetic coupling between the S = 5/2 Mn(II) and S = 1/2 [TCNE]˙(-) leads to magnetic ordering as a canted antiferrimagnet at a T(c) of 171 K.  相似文献   

19.
Solutions of K[Au(CN)(2)] and K[Ag(CN)(2)] in water and methanol exhibit strong photoluminescence. Aqueous solutions of K[Au(CN)(2)] at ambient temperature exhibit luminescence at concentration levels of > or =10(-2) M, while frozen methanol glasses (77 K) exhibit strong luminescence with concentrations as low as 10(-5) M. The corresponding concentration limits for K[Ag(CN)(2)] solutions are 10(-1) M at ambient temperature and 10(-4) M at 77 K. Systematic variations in concentration, solvent, temperature, and excitation wavelength tune the luminescence energy of both K[Au(CN)(2)] and K[Ag(CN)(2)] solutions by >15 x 10(3) cm(-1) in the UV-visible region. The luminescence bands have been individually assigned to *[Au(CN)(2)(-)](n) and *[Ag(CN)(2)(-)](n) excimers and exciplexes that differ in "n" and geometry. The luminescence of Au(I) compounds is related for the first time to Au-Au bonded excimers and exciplexes similar to those reported earlier for Ag(I) compounds. Fully optimized unrestricted open-shell MP2 calculations for the lowest-energy triplet excited state of staggered [Au(CN)(2)(-)](2) show the formation of a Au-Au sigma single bond (2.66 A) in the triplet excimer, compared to a weaker ground-state aurophilic bond (2.96 A). The corresponding frequency calculations revealed Au-Au Raman-active stretching frequencies at 89.8 and 165.7 cm(-1) associated with the ground state and lowest triplet excited state, respectively. The experimental evidence of the exciplex assignment includes the extremely large Stokes shifts and the structureless feature of the luminescence bands, which suggest very distorted excited states. Extended Hückel (EH) calculations for [M(CN)(2)(-)](n) and *[M(CN)(2)(-)](n) models (M = Au, Ag; n = 2, 3) indicate the formation of M-M bonds in the first excited electronic states. From the average EH values for staggered dimers and trimers, the excited-state Au-Au and Ag-Ag bond energies are predicted to be 104 and 112 kJ/mol, respectively. The corresponding bond energies in the ground state are 32 and 25 kJ/mol, respectively.  相似文献   

20.
The lability and structural dynamics of [Fe(II)(edta)(H(2)O)](2-) (edta = ethylenediaminetetraacetate) in aqueous solution strongly depend on solvent interactions. To study the solution structure and water-exchange mechanism, (1)H, (13)C, and (17)O NMR techniques were applied. The water-exchange reaction was studied through the paramagnetic effect of the complex on the relaxation rate of the (17)O nucleus of the bulk water. In addition to variable-temperature experiments, high-pressure NMR techniques were applied to elucidate the intimate nature of the water-exchange mechanism. The water molecule in the seventh coordination site of the edta complex is strongly labilized, as shown by the water-exchange rate constant of (2.7 +/- 0.1) x 106 s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(not equal), DeltaS(not equal), and DeltaV(not equal) were found to be 43.2 +/- 0.5 kJ mol(-1), +23 +/- 2 J K(-1) mol(-1), and +8.6 +/- 0.4 cm(3) mol(-1), respectively, in line with a dissociatively activated interchange (Id) mechanism. The scalar coupling constant (A/h) for the Fe(II)-O interaction was found to be 10.4 MHz, slightly larger than the value A/h = 9.4 MHz for this interaction in the hexa-aqua Fe(II) complex. The solution structure and dynamics of [Fe(II)(edta)(H(2)O)](2-) were clarified by (1)H and (13)C NMR experiments. The complex undergoes a Delta,Lambda-isomerization process with interconversion of in-plane (IP) and out-of-plane (OP) positions. Acetate scrambling was also found in an NMR study of the corresponding NO complex, [Fe(III)(edta)(NO(-))](2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号