首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and stability of the pi-TCNE(2)2- dimers in K2TCNE2 aggregates is revisited trying to find if the origin of their two-electron/four-centers C--C bond are the electrostatic K+-TCNE- interactions or the dispersion interactions between the anions. The study is done at the HF, B3LYP, CASSCF (2,2), and MCQDPT/CASSCF (2,2) levels using the 6-31+G(d) basis set. Our results show that the only minima of this aggregate that preserves the pi-TCNE(2)2- structure has the two K+ atoms placed in equatorial positions in between the two TCNE- planes. When the K+ atoms are placed along the D2h axis of the anions the structure is not a minimum. The main energetic component responsible for the stability of these aggregates comes from the cation-anion interactions. However, a proper accounting of the dispersion component (as done in the MCQDPT/CASSCF (2,2) calculations) is needed to make the closed-shell singlet more stable than the open-shell singlet. Thus, the bond results from the combination of the electrostatic and dispersion components, being the first the dominant one. The optimum geometry of the closed-shell singlet is very similar to the experimental one found in crystals.  相似文献   

2.
A long, two-electron ten-center (2e(-)/10c) [8 carbon plus 2 oxygen] bond in diamagnetic dimers of radical-anion tetracyano-1,4-benzoquinoneide (cyanil, [Q] (-)), [Q](2)(2-), is described by B3LYP and CASSCF(2,2)/MCQDPT calculations.  相似文献   

3.
4.
5.
Multireference [complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT)] and single-reference ab initio (Moller-Plesset second order perturbation theory (MP2) and coupled clusters with singles, doubles and noniterative triples [CCSD(T)]) and density functional theory (PBE and B3LYP) electronic structure calculations of V(C(6)H(6))(+) half-sandwich in the states of different multiplicities are described and compared. Detailed analyses of the geometries and electronic structures of the all found states are given; adiabatic and diabatic dissociation energies are estimated. The lowest electronic state of V(C(6)H(6))(+) half-sandwich was found to be the quintet (5)B(2) state with a slightly deformed upside-down-boat-shaped benzene ring and d(4) configuration of V atom, followed by a triplet (3)A(2) state lying about 4 kcal/mol above. The lowest singlet state (1)A(1)(d(4)) lies much ( approximately 28 kcal/mol) higher. MCQDPT calculated adiabatic dissociation energy (53.6 kcal/mol) for the lowest (5)B(2)(d(4)) state agrees well with the current 56.4 (54.4) kcal/mol experimental estimate, giving a preference to the lower one. Compared to MCQDPT, B3LYP hybrid exchange-correlation functional provides the best results, while CCSD(T) performs usually worse. Gradient-corrected PBE calculations tend to systematically overestimate metal-benzene binding in the row quintet相似文献   

6.
The electronic ground states of the recently synthesized stable nonacene derivatives (J. Am. Chem. Soc. 2010, 132, 1261) are open-shell singlets with a polyradical nature instead of closed-shell singlets as originally assumed, according to the unrestricted broken spin-symmetry density functional theory (UBS-DFT) computations (at B3LYP/6-31G*). It is the bulky protecting groups, not the transfer from the open-shell singlet to closed-shell singlet ground state, that stabilizes these longest characterized acenes. Similar analyses also confirmed the open-shell singlet character of the hexacene and teranthene derivatives.  相似文献   

7.
High-level ab initio (CCSD(T), CBS-QB3 and CASSCF, CASPT2, MR-ACPF, MR-ACPF-2) and density functional theory (B3LYP) calculations were carried out to study the dimerization of phosphaacetylene or phosphaethyne (HCP). Seventeen low energy closed-shell and five open-shell phosphaacetylene dimers were found on the potential energy surface. Two head-to-head, one head-to-tail and three other dimerization reaction pathways were determined, all with high activation barriers, suggesting that closed-shell minima are usually kinetically stable. An open-shell head-to-head reaction pathway has also been found with moderate initial barrier (95.0 kJ mol(-1)) leading to 1,2- and 1,3-diphosphacyclobutadiene, suggesting that polymerization of HCP and oligomerization of its derivatives have open-shell mechanism. Formation of 1,2-diphosphacyclobutadiene is both thermodynamically and kinetically favored over 1,3-diphosphacyclobutadiene. A head-to-head reaction involving LiBr as a catalyst was also studied. It has been pointed out that LiBr catalyze the closed-shell mechanism. All the four possible reaction channels of this reaction yield 1,4-diphosphatriafulvene with a fairly low activation Gibbs-free energy (44.8 kJ mol(-1)), suggesting that this compound could be synthesized. This finding fully supports the experimental results.  相似文献   

8.
Cu(PPh3)3(TCNE) (TCNE = tetracyanoethylene) and 14 other examples form [TCNE]22- dimers possessing a long 2.89 +/- 0.05 A two-electron four-center (2e-/4c) C-C bond in the solid state. This bond arises from the overlap of the b2g pi* singly occupied molecular orbital (SOMO) on each [TCNE]*- fragment, forming a filled bonding orbital of b2u symmetry, and the stabilizing effect of the cation...anion interactions in the crystal that exceed the anionic repulsion. In contrast, Mn(C5H5)(CO)2(TCNE) exhibits a related, but different, [TCNE]*-...TCNE]*- motif in the solid state that lacks the 2e-/4c C-C bonding. To better understand the unusual nature of 2e-/4c C-C bonding, the genesis of the differences between their respective pi-[TCNE]*-...TCNE]*- interactions was sought. The lack of 2e-/4c C-C bond formation is attributed to the weaker radical character of the [TCNE]*- ligand, which has a total spin population of only 0.5 electron, half of that required for two S = 1/2 [TCNE]*- moieties to form a [TCNE]22- dimer. Hence, the antiferromagnetic MnII-[TCNE]*- intramolecular interaction (between the formally S = 1/2 Mn-bound [TCNE]*- and the paramagnetic Mn(II)) dominates over the intermolecular pi-[TCNE]*--[TCNE]*- spin coupling (between two S = 1/2 [TCNE]*- needed to form [TCNE]22-). Therefore, by selecting specific metal ions that can interact with sigma-[TCNE]*-, dimerization forming [TCNE]22- can be favored or disfavored.  相似文献   

9.
The principal (13)C chemical-shift values for the pi-[TCNE](2)(2-) dimer anion within an array of counterions have been measured to understand better the electronic structure of these atypical chemical species in several related TCNE-based structures. The structure of pi-[TCNE](2)(2-) is unusual as it contains two very long C-C bond lengths (ca. 2.9 Angstroms) between the two monomeric units and has been found to exist as a singlet state, suggestive of a (1)A(1g) (b(2u)(2)b(1g)(0)) electronic configuration. A systematic study of several oxidation states of [TCNE](n) (n = 0, 1-, 2-) was conducted to determine how the NMR chemical-shift tensor values change as a function of electronic structure and to understand the interactions that lead to spin-pairing of the monomer units. The density functional theory (DFT) calculated nuclear shielding tensors are correlated with the experimentally determined principal chemical-shift values. Such theoretical methods provide information on the tensor magnitudes and orientations of their principal tensor components with respect to the molecular frame. Both theoretical and experimental ethylenic chemical-shielding tensors reveal high sensitivity in the component, delta(perpendicular), lying in the monomer molecular plane and perpendicular to the pi-electron plane. This largest shift dependence on charge density is observed to be about -111 ppm/e(-) for delta(perpendicular). The component in the molecular plane but parallel to the central C=C bond, delta(parallel), exhibits a sensitivity of approximately -43 ppm/e(-). However, the out-of-plane component delta'(perpendicular) shows a minimal dependence of -2.6 ppm/e(-) on the oxidation state (n) of [TCNE](n). These relative values support the claim that it is changes within the ethylenic pi-electrons and not the sigma-electrons that best account for the dramatic variations in bonding and shift tensors in this series of compounds. Concerning the intraion bonding, relatively weak Wiberg bond orders between the two monomeric components of the dimer correlate with the long bonds linking the two [TCNE(*)](-) monomers. The chemical-shift tensors for the cyano group, compared to the ethylene shifts, exhibit a reduced sensitivity on the TCNE oxidation state. The experimental principal chemical-shift components agree (within typical errors) with the calculated quantum mechanical shieldings used to correlate the bonding. The embedded ion model (EIM) was used to investigate the typically large electrostatic lattice potential in these ionic materials. Chemical-shielding principal values calculated with the EIM model differ from experiment by +/-3.82 ppm on average, whereas in the absence of an electrostatic field model, the experimental and theoretical results agree by +/-4.42 ppm, which is only a modest increase in error considering the overall ionic magnitudes associated with the tensor variations. Apparently, the effects of the sizable long-range electrostatic fields cancel when the shifts are computed because of lattice symmetry.  相似文献   

10.
The reaction of Fe(II)(C5Me5)(C5H5), FeCpCp, with percyano acceptors, A [A = C4(CN)6 (hexacyanobutadiene), TCNQF4 (perfluoro-7,7,8,8-tetracyano-p-quinodimethane), and DDQ (2,3-dichloro-5,6-dicyanobenzoquinone)], results in formation of 1:1 charge-transfer salts of [Fe(III)CpCp]*]*+[A]*- composition. With A = TCNQ (7,7,8,8-tetracyano-p-quinodimethane) a 1:2 electron-transfer salt with FeCpCp forms. With A = TCNE (tetracyanoethylene) a pair of 1:1 salts as well as a pair of 2:3 salts of [FeCpCp]2[TCNE]3.S (S = CH2Cl2, THF) have been isolated and characterized by single-crystal X-ray diffraction. [FeCpCp][TCNE] consists of parallel 1-D.D(*+)A(*-)D(*+)A(*-)D(*+)A(*-). chains, while [FeCpCp][TCNE].MeCN has a herringbone array of D(*+)A2(2-)D(*+) dimers separated by solvent molecules. Although each [TCNE](-) is disordered, the diamagnetic [TCNE]2(2-) dimer is structurally different from those observed earlier with an intradimer separation of 2.79 A. The [TCNE](-) in the 2:3 [FeCpCp]2[TCNE]3.S exists as an eclipsed diamagnetic [TCNE]2(2-) dimer with an intradimer ethylene C.C separation of 2.833 and 2.903 A for the CH2Cl2- and THF-containing materials, respectively. The bond distances and angles for all the cations are essentially equivalent, and the distances are essentially equivalent to those previously reported for [FeCp2](*+) and [FeCp2](*+) cations. The average Fe-C5H5-ring and Fe-C5Me5-ring centroid distances are 1.71 and 1.69 A, respectively, which are 0.05 A longer than reported for Fe(II)CpCp. The one-electron reduction potential for Fe(II)CpCp is 0.11 V (vs SCE). The 5 K EPR of [FeCpCp](*+)[BF4](-) exhibits an axially symmetric powder pattern with g(parallel) = 4.36 and g(perpendicular) = 1.24, and the EPR parameters are essentially identical to those reported for ferrocenium and decamethylferrocenium. The high-temperature magnetic susceptibility for polycrystalline samples of these complexes can be fit by the Curie-Weiss law, chi = C/(T - theta), with low theta values and mu(eff) values from 2.08 to 3.43 mu(B), suggesting that the polycrystalline samples measured had varying degrees of orientation. [FeCpCp][TCNE] exhibits the highest effective moment of 3.43 mu(B)/Fe and weak ferromagnetic coupling, as evidenced from the theta of 3.3 K; however, unexpectedly, it does not magnetically order above 2 K. The formation of the four phases comprising FeCpCp and TCNE emphasizes the diversity of materials that may form and the present inability to predict neither solid-state compositions nor structure types.  相似文献   

11.
Hirst ES  Wang F  Jasti R 《Organic letters》2011,13(23):6220-6223
The [5.7](n)cyclacenes represent a novel class of all sp(2)-hybridized carbon structures. In contrast to the isomeric [n]cyclacenes, [5.7](n)cyclacenes are predicted at the B3LYP/6-31G* level of theory to have stable, closed-shell singlet ground state configurations. Predicted geometries, electronic structures, band gaps, nucleus-independent chemical shift (NICS) values, and strain energies for this new family of cyclic conjugated molecules are presented.  相似文献   

12.
Recently, there has been a proposal [Y.-H. Kim et al., Phys. Rev. B 68, 125420 (2003)] suggesting that ferromagnetic interactions in compressed and heated polymeric-C(60) solids could be due to the existence of triplet open cages resulting from successive generalized Stone-Wales transformations within the C(60) cage. Here, by performing B3LYP3-21G and B3LYP6-31G(d) optimizations, we carried out a systematic investigation of the thermodynamics and kinetics of the mechanism of generation of these open cages in their closed-shell singlet, open-shell singlet, and triplet states. We also computed the magnetic interactions induced by the open cages presenting a triplet ground state. Our results indicate that this mechanism is not appropriate to explain the ferromagnetism found in compressed and heated polymeric C(60) for the following reasons: (a) the formation of the only open cage presenting a triplet ground state requires overpassing a highest energy point of 318 kcal/mol, well above other competitive mechanisms reported in the literature; the triplet open cages formed are not stable against their transformation into a diamagnetic intermediate; (c) the magnetic interactions between two adjacent triplet open cages are antiferromagnetic.  相似文献   

13.
14.
Using the spin-unrestricted hybrid density functional theory method, we have investigated the intermolecular interaction effects on the longitudinal static second hyperpolarizability (γ) of open-shell singlet slipped-stack dimers composed of singlet diradical square planar nickel complexes involving o-semiquinonato type ligands, Ni(o-C(6)H(4)X(2))(2) (where X = O, NH, S, Se, PH). For comparison, we have also examined the γ values of a closed-shell singlet slipped-stack dimer composed of closed-shell monomers Ni[o-C(6)H(4)S(NH(2))](2). It is found that for interplanar distance ranging between 3.0 and 5.0 ? the slipped-stack dimers with intermediate monomer diradical characters exhibit larger γ values per monomer (γ(dimer)/2) than those with large monomer diradical characters or than the closed-shell dimer. These results extend the domain of validity of the relationship found between γ and the diradical character for individual molecules. It also turns out that the ratio R = (γ(dimer)/2)/γ(monomer) increases upon decreasing the interplanar distance and that this increase is larger for intermediate diradical character than for the other cases. These phenomena have been analyzed by considering the γ density distributions of the dimers, demonstrating a significant field-induced third-order charge transfer between the monomers in the case of intermediate diradical character. The present results indicate that open-shell singlet slipped-stack aggregates composed of monomers with intermediate diradical characters constitute another mean for achieving highly efficient and tunable third-order nonlinear optical materials.  相似文献   

15.
The geometries and energies of 4-, 3-, and 2-dehydrophenylnitrenes (3, 4, and 5) are investigated using complete active space self-consistent field (CASSCF), multiconfiguration quasi-degenerate second-order perturbation (MCQDPT), and internally contracted multiconfiguration-reference configuration interaction (MRCI) theories in conjunction with a correlation consistent triple-zeta basis set. 4-Dehydrophenylnitrene 3 has a quartet ground state ((4)A(2)). The adiabatic excitation energies to the (2)A(2), (2)B(2), (2)A(1), and (2)B(1) states are 5, 21, 34, and 62 kcal mol(-1), respectively. The (2)B(2) state has pronounced closed-shell carbene/iminyl radical character, while the lowest-energy (2)B(1) state is a combination of a planar allene and a 2-iminylpropa-1,3-diyl. The MCQDPT treatment overestimates the excitation energy to (2)B(2) significantly as compared to CASSCF and MRCI+Q. Among quartet states, (4)A(2)-3 is the most stable one, while those of 4 and 5 (both (4)A') are 3 and 1 kcal mol(-1) higher in energy. 5 also has a quartet ground state and a (2)A' ' state 7 kcal mol(-1) higher in energy. On the other hand, the doublet-quartet energy splitting is -6 kcal mol(-1) for 4 in favor of the doublet state ((2)A'). Hence, (2)A'-4 is the most stable dehydrophenylnitrene, 3.5 kcal mol(-1) below (4)A(2) of 3. The geometry of (2)A'-4 shows the characteristic features of through-bond interaction between the in-plane molecular orbitals at N and at C3. The (2)A' state of 4 resembles the (2)A(1) state of 3 and lies 32 kcal mol(-1) above (4)A'-4. The lowest-energy (2)A' state of 5, on the other hand, resembles the (2)B(2) state of 3 and lies 22 kcal mol(-1) above (4)A'-5.  相似文献   

16.
Synthons Tl1[TCNE]*- (1) and Tl12[TCNE]2- (2), for [TCNE]*- and [TCNE]2-, respectively, in metathesis reactions have been quantitatively prepared and characterized. The structure of 1 was solved and refined in a monoclinic unit cell at 27 degrees C [C2/c, a = 12.6966 (12) angstroms, b=7.7599 (7) angstroms, c=15.5041 (15) angstroms, beta = 96.610 (5) degrees , V= 1517.4 (2) angstroms3, Dcalcd = 2.911 gcm-3, Z=8, R1 = 0.0575, omegaR2=0.0701] and exhibits nuCN absorptions at 2,191 (s) and 2,162 (s) cm-1 consistent with metal-bound [TCNE]*-. The structure of 1 consists of a distorted square antiprismatic octacoordinate Tl1 bound to six monodentate [TCNE]*-s with TlN separations ranging from 2.901 to 3.171 angstroms averaging 3.020 angstroms, and one bidentate [TCNE]*- with TlN separations averaging 3.279 angstroms. The TlN bonding is attributed to electrostatic bonding. The [TCNE]*-s form dimerized zigzag chains with intra- and interdimer separations of 2.87 and 3.29 angstroms, respectively. The tight pi-[TCNE](2)2- dimer is diamagnetic and has the shortest intradimer [TCNE]*- distance reported. These synthons for [TCNE]*- and [TCNE]2- in metathesis reactions lead to the precipitation of, for example, TlIX (X = Cl, Br, OAc). Reaction of 1 with MnIII(porphyrin)X (X = Cl, OAc) forms the molecule-based magnets of [MnIII(porphyrin)][TCNE] composition, while the reaction of [CrI(C6H6)2]Br and (Me2N)2CC(NMe2)2Cl2, [TDAE]Cl2, with 1 forms [CrI(C6H6)2] [TCNE] and [TDAE][TCNE]2, respectively. The structure of [TDAE][TCNE]2.MeCN was solved and refined in an orthorhombic unit cell at 21 degrees C [I222, a = 10.2332(15), b = 13.341(6), c = 19.907(8) angstroms, V= 2717.7 angstroms3, Z = 4; Dcalcd = 1.216 gcm-3, R=0.083, Romega = 0.104] and exhibits upsilonCN absorptions at 2,193 (m), 2,174 (s), and 2,163 (s) cm-1 consistent with isolated [TCNE](2)2- , in contrast to the aforementioned TlI bound [TCNE](2)2-. The reaction of 2 with [TDAE]Cl2 forms [TDAE]2+[TCNE]2-.  相似文献   

17.
The geometries and energies of the electronic states of phenyloxenium ion 1 (Ph-O(+)) were computed at the multireference CASPT2/pVTZ level of theory. Despite being isoelectronic to phenylnitrene 4, the phenyloxenium ion 1 has remarkably different energetic orderings of its electronic states. The closed-shell singlet configuration ((1)A(1)) is the ground state of the phenyloxenium ion 1, with a computed adiabatic energy gap of 22.1 kcal/mol to the lowest-energy triplet state ((3)A(2)). Open-shell singlet configurations ((1)A(2), (1)B(1), (1)B(2), 2(1)A(1)) are significantly higher in energy (>30 kcal/mol) than the closed-shell singlet configuration. These values suggest a revision to the current assignments of the ultraviolet photoelectron spectroscopy bands for the phenoxy radical to generate the phenyloxenium ion 1. For para-substituted phenyloxenium ions, the adiabatic singlet-triplet energy gap (ΔE(ST)) is found to have a positive linear free energy relationship with the Hammett-like σ(+)(R)/σ(+) substituent parameters; for meta substituents, the relationship is nonlinear and negatively correlated. CASPT2 analyses of the excited states of p-aminophenyloxenium ion 5 and p-cyanophenyloxenium ion 10 indicate that the relative orderings of the electronic states remain largely unperturbed for these para substitutions. In contrast, meta-donor-substituted phenyloxenium ions have low-energy open-shell states (open-shell singlet, triplet) due to stabilization of a π,π* diradical state by the donor substituent. However, all of the other phenyloxenium ions and larger aryloxenium ions (naphthyl, anthryl) included in this study have closed-shell singlet ground states. Consequently, ground-state reactions of phenyloxenium ions are anticipated to be more closely related to closed-shell singlet arylnitrenium ions (Ar-NH(+)) than their isoelectronic arylnitrene (Ar-N) counterparts.  相似文献   

18.
We report scalar relativistic and Dirac scattered wave (DSW) calculations on the heptacyanorhenate [Re(CN)7](3-) and Re(CN)7(4-) complexes. Both the ground and lowest excited states of each complex split by spin-orbit interaction by about 0.3 eV. The calculated molecular electronegativities chi indicate that the open-shell complex is less reactive than the closed-shell complex, in agreement with experimental observations. The calculations indicate that the ground state spin density is highly anisotropic and that spin-orbit effects are responsible for the magnetic anisotropy of the molecular g tensor of the Re(CN)7(3-) complex. The calculated optical electronic transitions for both complexes with a polarizable continuum model using a time-dependent density functional (TDDFT)/B3LYP formalism are in reasonable agreement with those observed in the absorption spectrum.  相似文献   

19.
The geometrical and electronic properties of the anionic and neutral V2O6 clusters were studied with the spin unrestricted hybrid density functional B3LYP method. The calculated ground states of both clusters are different from the previous theoretical results. The ground state of V2O6- is found to be a doublet with C2v symmetry, while a doublet with D2h symmetry was previously obtained by Vyboishchikov and Sauer. For neutral V2O6, the ground state is an open-shell singlet with D2h symmetry whose energy is very close to that of the triplet state. In contrast, a closed-shell singlet with D2h symmetry was obtained by Vyboishchikov and Sauer, and Calatayud et al. found a triplet ground state with Cs symmetry. Moreover,the calculated adiabatic and vertical detachment energies of the anion cluster are in much better agreement with the experimental results of photoelectron spectroscopy than previous theoretical values.  相似文献   

20.
The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号