首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The mutual sensitization of the oxidation of NO and a natural gas blend (methane-ethane 10:1) was studied experimentally in a fused silica jet-stirred reactor operating at 10 atm, over the temperature range 800-1160 K, from fuel-lean to fuel-rich conditions. Sonic quartz probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses were used to measure the concentration profiles of the reactants, the stable intermediates, and the final products. A detailed chemical kinetic modeling of the present experiments was performed yielding an overall good agreement between the present data and this modeling. According to the proposed kinetic scheme, the mutual sensitization of the oxidation of this natural gas blend and NO proceeds through the NO to NO2 conversion by HO2, CH3O2, and C2H5O2. The detailed kinetic modeling showed that the conversion of NO to NO2 by CH3O2 and C2H5O2 is more important at low temperatures (ca. 820 K) than at higher temperatures where the reaction of NO with HO2 controls the NO to NO2 conversion. The production of OH resulting from the oxidation of NO by HO2, and the production of alkoxy radicals via RO2 + NO reactions promotes the oxidation of the fuel. A simplified reaction scheme was delineated: NO + HO2 --> NO2 + OH followed by OH + CH4 --> CH3 + H2O and OH + C2H6 --> C2H5 + H2O. At low-temperature, the reaction also proceeds via CH3 + O2 (+ M) --> CH3O2 (+ M); CH3O2 + NO --> CH3O + NO2 and C2H5 + O2 --> C2H5O2; C2H5O2 + NO --> C2H5O + NO2. At higher temperature, methoxy radicals are produced via the following mechanism: CH3 + NO2 --> CH3O + NO. The further reactions CH3O --> CH2O + H; CH2O + OH --> HCO + H2O; HCO + O2 --> HO2 + CO; and H + O2 + M --> HO2 + M complete the sequence. The proposed model indicates that the well-recognized difference of reactivity between methane and a natural gas blend is significantly reduced by addition of NO. The kinetic analyses indicate that in the NO-seeded conditions, the main production of OH proceeds via the same route, NO + HO2 --> NO2 + OH. Therefore, a significant reduction of the impact of the fuel composition on the kinetics of oxidation occurs.  相似文献   

2.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

3.
The atmospheric chemistry of two C(4)H(8)O(2) isomers (methyl propionate and ethyl acetate) was investigated. With relative rate techniques in 980 mbar of air at 293 K the following rate constants were determined: k(C(2)H(5)C(O)OCH(3) + Cl) = (1.57 ± 0.23) × 10(-11), k(C(2)H(5)C(O)OCH(3) + OH) = (9.25 ± 1.27) × 10(-13), k(CH(3)C(O)OC(2)H(5) + Cl) = (1.76 ± 0.22) × 10(-11), and k(CH(3)C(O)OC(2)H(5) + OH) = (1.54 ± 0.22) × 10(-12) cm(3) molecule(-1) s(-1). The chlorine atom initiated oxidation of methyl propionate in 930 mbar of N(2)/O(2) diluent (with, and without, NO(x)) gave methyl pyruvate, propionic acid, acetaldehyde, formic acid, and formaldehyde as products. In experiments conducted in N(2) diluent the formation of CH(3)CHClC(O)OCH(3) and CH(3)CCl(2)C(O)OCH(3) was observed. From the observed product yields we conclude that the branching ratios for reaction of chlorine atoms with the CH(3)-, -CH(2)-, and -OCH(3) groups are <49 ± 9%, 42 ± 7%, and >9 ± 2%, respectively. The chlorine atom initiated oxidation of ethyl acetate in N(2)/O(2) diluent gave acetic acid, acetic acid anhydride, acetic formic anhydride, formaldehyde, and, in the presence of NO(x), PAN. From the yield of these products we conclude that at least 41 ± 6% of the reaction of chlorine atoms with ethyl acetate occurs at the -CH(2)- group. The rate constants and branching ratios for reactions of OH radicals with methyl propionate and ethyl acetate were investigated theoretically using transition state theory. The stationary points along the oxidation pathways were optimized at the CCSD(T)/cc-pVTZ//BHandHLYP/aug-cc-pVTZ level of theory. The reaction of OH radicals with ethyl acetate was computed to occur essentially exclusively (~99%) at the -CH(2)- group. In contrast, both methyl groups and the -CH(2)- group contribute appreciably in the reaction of OH with methyl propionate. Decomposition via the α-ester rearrangement (to give C(2)H(5)C(O)OH and a HCO radical) and reaction with O(2) (to give CH(3)CH(2)C(O)OC(O)H) are competing atmospheric fates of the alkoxy radical CH(3)CH(2)C(O)OCH(2)O. Chemical activation of CH(3)CH(2)C(O)OCH(2)O radicals formed in the reaction of the corresponding peroxy radical with NO favors the α-ester rearrangement.  相似文献   

4.
The reaction of CH(3)C(O)O(2) with HO(2) has been investigated at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/CH(3)CHO/CH(3)OH/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)O, OH and O(2) (reaction ) has been determined from experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The dependence of the phenol yield on benzene concentration was found to be consistent with its formation from the OH-initiated oxidation of benzene, thereby confirming the presence of OH radicals in the system. The dependence of the phenol yield on the initial peroxy radical precursor reagent concentration ratio, [CH(3)OH](0)/[CH(3)CHO](0), is consistent with OH formation resulting mainly from the reaction of CH(3)C(O)O(2) with HO(2) in the early stages of the experiments, such that the limiting yield of phenol at high benzene concentrations is well-correlated with that of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel (3a)). However, a delayed source of phenol was also identified, which is attributed mainly to an analogous OH-forming channel of the reaction of HO(2) with HOCH(2)O(2) (reaction ), formed from the reaction of HO(2) with product HCHO. This was investigated in additional series of experiments in which Cl(2)/CH(3)OH/benzene/air and Cl(2)/HCHO/benzene/air mixtures were photolysed. The various reaction systems were fully characterised by simulations using a detailed chemical mechanism. This allowed the following branching ratios to be determined: CH(3)C(O)O(2) + HO(2)--> CH(3)C(O)OOH + O(2), k(3a)/k(3) = 0.38 +/- 0.13; --> CH(3)C(O)OH + O(3), k(3b)/k(3) = 0.12 +/- 0.04; --> CH(3)C(O)O + OH + O(2), k(3c)/k(3) = 0.43 +/- 0.10: HOCH(2)O(2) + HO(2)--> HCOOH + H(2)O + O(2), k(17b)/k(17) = 0.30 +/- 0.06; --> HOCH(2)O + OH + O(2), k(17c)/k(17) = 0.20 +/- 0.05. The results therefore provide strong evidence for significant participation of the radical-forming channels of these reactions, with the branching ratio for the title reaction being in good agreement with the value reported in one previous study. As part of this work, the kinetics of the reaction of Cl atoms with phenol (reaction (14)) have also been investigated. The rate coefficient was determined relative to the rate coefficient for the reaction of Cl with CH(3)OH, during the photolysis of mixtures of Cl(2), phenol and CH(3)OH, in either N(2) or air at 296 K and 760 Torr. A value of k(14) = (1.92 +/- 0.17) x 10(-10) cm(3) molecule(-1) s(-1) was determined from the experiments in N(2), in agreement with the literature. In air, the apparent rate coefficient was about a factor of two lower, which is interpreted in terms of regeneration of phenol from the product phenoxy radical, C(6)H(5)O, possibly via its reaction with HO(2).  相似文献   

5.
The acetyl + O(2) reaction has been studied by observing the time dependence of OH by laser-induced fluorescence (LIF) and by electronic structure/master equation analysis. The experimental OH time profiles were analyzed to obtain the kinetics of the acetyl + O(2) reaction and the relative OH yields over the temperature range of 213-500 K in helium at pressures in the range of 5-600 Torr. More limited measurements were made in N(2) and for CD(3)CO + O(2). The relative OH yields were converted into absolute yields by assuming that the OH yield at zero pressure is unity. Electronic structure calculations of the stationary points of the potential energy surface were used with a master equation analysis to fit the experimental data in He using the high-pressure limiting rate coefficient for the reaction, k(∞)(T), and the energy transfer parameter, (ΔE(d)), as variable parameters. The best-fit parameters obtained are k(∞) = 6.2 × 10(-12) cm(-3) molecule(-1) s(-1), independent of temperature over the experimental range, and (ΔE(d))(He) = 160(T/298?K) cm(-1). The fits in N(2), using the same k(∞)(T), gave (ΔE(d))(N(2)) = 270(T/298?K) cm(-1). The rate coefficients for formation of OH and CH(3)C(O)O(2) are provided in parametrized form, based on modified Troe expressions, from the best-fit master equation calculations, over the pressure and temperature ranges of 1 ≤ p/Torr ≤ 1.5 × 10(5) and 200 ≤ T/K ≤ 1000 for He and N(2) as the bath gas. The minor channels, leading to HO(2) + CH(2)CO and CH(2)C(O)OOH, generally have yields <1% over this range.  相似文献   

6.
采用表面改性和离子交换相结合的方法制备了Ni2(OCH3)2/SiO2负载型双核金属甲氧基配合物催化剂,利用红外光谱(IR)、程序升温脱附(TPD)、程序升温表面反应(TPSR)和微反技术考察了催化剂的表面结构以及CO2和CH3OH的化学吸附和反应性能.结果表明:Ni2(OCH3)2/SiO2中Ni2+与载体SiO2表面O2-以双齿配位形式键合,甲氧基以桥基形式联结双金属离子形成双核物种Ni2(OCH3)2;CO2在催化剂表面存在甲氧碳酸酯基物种和桥式两种吸附态,CH3OH则只有一种分子吸附态;在100~200℃条件下,CO2和CH3OH在催化剂上的反应产物主要是DMC和H2O;根据反应结果,讨论了催化反应机理.  相似文献   

7.
The multiple-channel reactions OH + CH3NHC(O)OCH3 --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-311+G(d,p) level, and energetic information is further refined by the BMC-CCSD (single-point) method. The rate constants for every reaction channels, R1, R2, R3, and R4, are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-1000 K. The total rate constants are in good agreement with the available experimental data and the two-parameter expression k(T) = 3.95 x 10(-12) exp(15.41/T) cm3 molecule(-1) s(-1) over the temperature range 200-1000 K is given. Our calculations indicate that hydrogen abstraction channels R1 and R2 are the major channels due to the smaller barrier height among four channels considered, and the other two channels to yield CH3NC(O)OCH3 + H2O and CH3NHC(O)(OH)OCH3 + H2O are minor channels over the whole temperature range.  相似文献   

8.
The mechanism of the gas-phase reaction of OH radicals with hydroxyacetone (CH3C(O)CH2OH) was studied at 200 Torr over the temperature range 236-298 K in a turbulent flow reactor coupled to a chemical ionization mass-spectrometer. The product yields and kinetics were measured in the presence of O2 to simulate the atmospheric conditions. The major stable product at all temperatures is methylglyoxal. However, its yield decreases from 82% at 298 K to 49% at 236 K. Conversely, the yields of formic and acetic acids increase from about 8% to about 20%. Other observed products were formaldehyde, CO2 and peroxy radicals HO2 and CH3C(O)O2. A partial re-formation of OH radicals (by approximately 10% at 298 K) was found in the OH + hydroxyacetone + O2 chemical system along with a noticeable inverse secondary kinetic isotope effect (k(OH)/k(OD) = 0.78 +/- 0.10 at 298 K). The observed product yields are explained by the increasing role of the complex formed between the primary radical CH3C(O)CHOH and O2 at low temperature. The rate constant of the reaction CH3C(O)CHOH + O2 --> CH3C(O)CHO + HO2 at 298 K, (3.0 +/- 0.6) x 10(-12) cm3 molecule(-1) s(-1), was estimated by computer simulation of the concentration-time profiles of the CH3C(O)CHO product. The detailed mechanism of the OH-initiated oxidation of hydroxyacetone can help to better describe the atmospheric oxidation of isoprene, in particular, in the upper troposphere.  相似文献   

9.
The mechanism of the gas-phase reaction of *CH2OH+O2 to form CH2O+HO2* was studied theoretically by means of high-level quantum-chemical electronic structure methods (CASSCF and CCSD(T)). The calculations indicate that the oxidation of *CH2OH by O2 is a two-step process that goes through the peroxy radical intermediate *OOCH2OH (1), formed by the barrier-free radical addition of *CH2OH to O2. The concerted elimination of HO2* from 1 is predicted to occur via a five-membered ringlike transition structure of Cs symmetry, TS1, which lies 19.6 kcalmol(-1) below the sum of the energies of the reactants at 0 K. A four-membered ringlike transition structure TS2 of Cs symmetry, which lies 13.9 kcalmol(-1) above the energy of the separated reactants at 0 K, was also found for the concerted HO2* elimination from 1. An analysis of the electronic structures of TS1 and TS2 indicates that both modes of concerted HO2* elimination from 1 are better described as internal proton transfers than as intramolecular free-radical H-atom abstractions. The intramolecular 1,4-H-atom transfer in 1, which yields the alkoxy radical intermediate HOOCH2O*, takes place via a puckered ringlike transition structure TS3 that lies 13.7 kcalmol(-1) above the energy of the reactants at 0 K. In contrast with earlier studies suggesting that a direct H-atom abstraction mechanism might occur at high temperatures, we could not find any transition structure for direct H-atom transfer from the OH group of *CH2OH to the O2. The observed non-Arrhenius behavior of the temperature dependence of the rate constant for the gas-phase oxidation of *CH2OH is ascribed to the combined effect of the initial barrier-free formation of the *OO-CH2OH adduct with a substantial energy release and the existence of a low-barrier and two high-barrier pathways for its decomposition into CH2O and HO2*.  相似文献   

10.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

11.
The reflected shock tube technique with multipass absorption spectrometric detection of OH-radicals at 308 nm, corresponding to a total path length of approximately 2.8 m, has been used to study the reaction CH3 + O2 CH2O + OH. Experiments were performed between 1303 and 2272 K, using ppm quantities of CH3I (methyl source) and 5-10% O2, diluted with Kr as the bath gas at test pressures less than 1 atm. We have also reanalyzed our earlier ARAS measurements for the atomic channel (CH3 + O2 --> CH3O + O) and have compared both these results with other earlier studies to derive a rate expression of the Arrhenius form. The derived expressions, in units of cm3 molecule(-1) s(-1), are k = 3.11 x 10(-13) exp(-4953 K/T) over the T-range 1237-2430 K, for the OH-channel, and k = 1.253 x 10(-11) exp(-14241 K/T) over the T-range 1250-2430 K, for the O-atom channel. Since CH2O is a major product in both reactions, reliable rates for the reaction CH2O + O2 --> HCO + HO2 could be derived from [OH]t and [O]t experiments over the T-range 1587-2109 K. The combined linear least-squares fit result, k = 1.34 x 10(-8) exp(-26883 K/T) cm3 molecule(-1) s(-1), and a recent VTST calculation clearly overlap within the uncertainties in both studies. Finally, a high sensitivity for the reaction OH + O2 --> HO2 + O was noted at high temperature in the O-atom data set simulations. The values for this obtained by fitting the O-atom data sets at later times (approximately 1.2 ms) again follow the Arrhenius form, k = 2.56 x 10(-10) exp(-24145 K/T) cm3 molecule(-1) s(-1), over the T-range, 1950-2100 K.  相似文献   

12.
DeSain JD  Taatjes CA  Miller JA  Klippenstein SJ  Hahn DK 《Faraday discussions》2001,(119):101-20; discussion 121-43
The time-resolved production of HO2 in the Cl-initiated oxidation of iso- and n-butane is measured using continuous-wave (CW) infrared frequency modulation spectroscopy between 298 and 693 K. The yield of HO2 is determined relative to the Cl2/CH3OH/O2 system. As in studies of smaller alkanes, the branching fraction to HO2 + alkene in butyl + O2 displays a dramatic rise with increasing temperature between about 550 and 700 K (the "transition region") which is accompanied by a qualitative change in the time behavior of the HO2 production. At low temperatures the HO2 is formed promptly; a second, slower production of HO2 is responsible for the bulk of the increased yield in the transition temperature region. In contrast to reactions of smaller alkyl radicals with O2, the total HO2 yield in the butyl radical reactions appears to remain significantly below 1 up to 700 K, implying a significant role for OH-producing channels. The slower HO2 production in butane oxidation displays an apparent activation energy similar to that measured for smaller alkyl + O2 reactions, suggesting that the energetics of the HO2 elimination transition state are similar for a broad range of R + O2 systems. A combination of QCISD(T) based characterizations of the propyl and butyl + O2 potential energy surfaces and master equation based characterization of the propyl + O2 kinetics provide the framework for explanation of the experimentally observed HO2 production in Cl-initiated propane and butane oxidation. These calculations suggest that the HO2 elimination channel is similar in all reaction systems, and that hydroperoxyalkyl (QOOH) species produced by internal H-atom abstraction in RO2 can provide a path to OH formation. However, the QOOH formed by the energetically favorable 1,5 isomerization (via a six-membered ring transition state) generally experiences significant barriers (relative to the radical + O2 reactants) to the production of an oxetane + OH. In contrast, the barriers to forming OH + an oxirane or an oxolane, via 1,4 or 1,6 isomerizations, respectively, are generally below reactants.  相似文献   

13.
The kinetics and the mechanism of the reaction CH(3)C(O)O(2)+ HO(2) were reinvestigated at room temperature using two complementary approaches: one experimental, using flash photolysis/UV absorption technique and one theoretical, with quantum chemistry calculations performed using the density functional theory (DFT) method with the three-parameter hybrid functional B3LYP associated with the 6-31G(d,p) basis set. According to a recent paper reported by Hasson et al., [J. Phys. Chem., 2004, 108, 5979-5989] this reaction may proceed by three different channels: CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OOH + O(2) (1a); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OH + O(3) (1b); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)O + OH + O(2) (1c). In experiments, CH(3)C(O)O(2) and HO(2) radicals were generated using Cl-initiated oxidation of acetaldehyde and methanol, respectively, in the presence of oxygen. The addition of amounts of benzene in the system, forming hydroxycyclohexadienyl radicals in the presence of OH, allowed us to answer that channel (1c) is <10%. The rate constant k(1) of reaction (1) has been finally measured at (1.50 +/- 0.08) x 10(-11) cm(3) molecule(-1) s(-1) at 298 K, after having considered the combination of all the possible values for the branching ratios k(1a)/k(1,)k(1b)/k(1,)k(1c)/k(1) and has been compared to previous measurements. The branching ratio k(1b)/k(1), determined by measuring ozone in situ, was found to be equal to (20 +/- 1)%, a value consistent with the previous values reported in the literature. DFT calculations show that channel (1c) is also of minor importance: it was deduced unambiguously that the formation of CH(3)C(O)OOH + O(2) (X (3)Sigma(-)(g)) is the dominant product channel, followed by the second channel (1b) leading to CH(3)C(O)OH and singlet O(3) and, much less importantly, channel (1c) which corresponds to OH formation. These conclusions give a reliable explanation of the experimental observations of this work. In conclusion, the present study demonstrates that the CH(3)C(O)O(2)+ HO(2) is still predominantly a radical chain termination reaction in the tropospheric ozone chain formation processes.  相似文献   

14.
The reactions CH(3)CO + O(2)--> products (1), CH(3)CO + O(2)--> OH +other products (1b) and CH(3)C(O)CH(2) + O(2)--> products (2) have been studied in isothermal discharge flow reactors with laser induced fluorescence monitoring of OH and CH(3)C(O)CH(2) radicals. The experiments have been performed at overall pressures between 1.33 and 10.91 mbar of helium and 298 +/- 1 K reaction temperature. OH formation has been found to be the dominant reaction channel for CH(3)CO + O(2): the branching ratio, Gamma(1b) = k(1b)/k(1), is close to unity at around 1 mbar, but decreases rapidly with increasing pressure. The rate constant of the overall reaction, k(2), has been found to be pressure dependent: the fall-off behaviour has been analysed in comparison with reported data. Electronic structure calculations have confirmed that at room temperature the reaction of CH(3)C(O)CH(2) with O(2) is essentially a recombination-type process. At high temperatures, the further reactions of the acetonyl-peroxyl adduct may yield OH radicals, but the most probable channel seems to be the O(2)-catalysed keto-enol transformation of acetonyl. Implications of the results for atmospheric modelling studies have been discussed.  相似文献   

15.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

16.
The reaction of CH(3)C(O)CH(2)O(2) with HO(2) has been studied at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/acetone/methanol/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)CH(2)O, OH and O(2) () was investigated in experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The observed prompt formation of phenol under conditions when CH(3)C(O)CH(2)O(2) reacts mainly with HO(2) indicates that this reaction proceeds partially by channel , which forms OH both directly and indirectly, by virtue of secondary generation of CH(3)C(O)O(2) (from CH(3)C(O)CH(2)O) and its reaction with HO(2) (). The secondary generation of OH radicals was confirmed by the observed formation of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel ). A number of delayed sources of OH also contribute to the observed phenol formation, such that full characterisation of the system required simulations using a detailed chemical mechanism. The dependence of the phenol and CH(3)C(O)OOH yields on the initial peroxy radical precursor reagent concentration ratio, [methanol](0)/[acetone](0), were well described by the mechanism, consistent with a small but significant fraction of the reaction of CH(3)C(O)CH(2)O(2) with HO(2) proceeding via channel . This allowed a branching ratio of k(3b)/k(3) = 0.15 +/- 0.08 to be determined. The results therefore provide strong indirect evidence for the participation of the radical-forming channel of the title reaction.  相似文献   

17.
Dimethyl ether is under consideration as an alternative diesel fuel. Its combustion chemistry is as yet ill-characterized. Here we use Born-Oppenheimer molecular dynamics (BOMD) based on DFT-B3LYP forces to investigate the short-time dynamics of selected features of the low-temperature dimethyl ether (DME) oxidation potential energy surface. Along the chain propagation pathway, we run BOMD simulations from the transition state involving the decomposition of (*)CH(2)OCH(2)OOH to two CH(2)=O and an (*)OH radical. We predict that formaldehyde C-O stretch overtones are excited, consistent with laser photolysis experiments. We also predict that O-H overtones are excited for the (*)OH formed from (*)CH(2)OCH(2)OOH dissociation. We also investigate short-time dynamics involved in chain branching. First, we examine the isomerization transition state of (*)OOCH(2)OCH(2)OOH --> HOOCH(2)OCHOOH. The latter species is predicted to be a short-lived metastable radical that decomposes within 500 fs to hydroperoxymethyl formate (HPMF; HOOCH(2)OC(=O)H) and the first (*)OH of chain branching. The dissociation of HOOCH(2)OCHOOH exhibits non-RRKM behavior in its lifetime profile, which may be due to conformational constraints or slow intramolecular vibrational energy transfer (IVR) from the nascent H-O bond to the opposite end of the radical, where O-O scission occurs to form HPMF and (*)OH. In a few trajectories, we see HOOCH(2)OCHOOH recross back to (*)OOCH(2)OCH(2)OOH because the isomerization is endothermic, with only an 8 kcal/mol barrier to recrossing. Therefore, some inhibition of chain-branching may be due to recrossing. Second, trajectories run from the transition state leading to the direct decomposition of HPMF (an important source of the second (*)OH radical in chain branching) to HCO, (*)OH, and HC(=O)OH show that these products can recombine to form many other possible products. These products include CH(2)OO + HC(=O)OH, H(2)O + CO + HC(=O)OH, HC(=O)OH + HC(=O)OH, and HC(=O)C(=O)H + H(2)O, which (save CH(2)OO + HC(=O)OH) are all more thermodynamically stable than the original HCO + (*)OH + HC(=O)OH products. Moreover, the multitude of extra products suggest that standard statistical rate theories cannot completely describe the reaction kinetics of significantly oxygenated compounds such as HPMF. These secondary products consume the second (*)OH required for explosive combustion, suggesting an inhibition of DME fuel combustion is likely.  相似文献   

18.
A dual-level direct dynamic method is employed to study the reaction mechanisms of CF3CH2OCHF2 (HFE-245fa2; HFE-245mf) with the OH radicals and Cl atoms. Two hydrogen abstraction channels and two displacement processes are found for each reaction. For further study, the reaction mechanisms of its products (CF3CH2OCF2 and CF3CHOCHF2) and parent ether CH3CH2OCH3 with OH radical are investigated theoretically. The geometries and frequencies of all the stationary points and the minimum energy paths (MEPs) are calculated at the B3LYP/6-311G(d,p) level. The energetic information along the MEPs is further refined at the G3(MP2) level of theory. For reactions CF3CH2OCHF2 + OH/Cl, the calculation indicates that the hydrogen abstraction from --CH2-- group is the dominant reaction channel, and the displacement processes may be negligible because of the high barriers. The standard enthalpies of formation for the reactant CF3CH2OCHF2, and two products CF3CH2OCHF2 and CF3CHOCHF2 are evaluated via group-balanced isodesmic reactions. The rate constants of reactions CF3CH2OCHF2 + OH/Cl and CH3CH2OCH3 + OH are estimated by using the variational transition state theory over a wide range of temperature (200-2000 K). The agreement between the theoretical and experimental rate constants is good in the measured temperature range. From the comparison between the rate constants of the reactions CF3CH2OCHF2 and CH3CH2OCH3 with OH, it is shown that the fluorine substitution decreases the reactivity of the C--H bond.  相似文献   

19.
The E(CO)2 elimination reactions of alkyl hydroperoxides proceed via abstraction of an alpha-hydrogen by a base: X(-) + R(1)R(2)HCOOH --> HX + R(1)R(2)C=O + HO(-). Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO(-) + CH3OOH, HO(-) + CD3OOH, and H(18)O(-) + CH3OOH, the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO(-) are the exclusive pathways observed for (CH3)3COOH, which has no alpha-hydrogen. All results are consistent with the E(CO)2 mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO(-) + CH3OOH also reveals some interaction between H2O and HO(-) within the E(CO)2 product complex [H2O...CH2=O...HO(-)]. There is little evidence, however, for the formation of the most exothermic products H2O + CH2(OH)O(-), which would arise from nucleophilic condensation of CH2=O and HO(-). The results suggest that the product dynamics are not totally statistical but are rather direct after the E(CO)2 transition state. The larger HO(-) + CH3CH2OOH system displays more statistical behavior during complex dissociation.  相似文献   

20.
In this study we investigated the secondary formation of HO(2) following the benzene + OH reaction in N(2) with variable O(2) content at atmospheric pressure and room temperature in the absence of NO. After pulsed formation of OH, HO(x) (= OH + HO(2)) and OH decay curves were measured by means of a laser-induced fluorescence technique (LIF). In synthetic air the total HO(2) yield was determined to be 0.69 ± 0.10 by comparison to results obtained with CO as a reference compound. HO(2) is expected to be a direct product of the reaction of the intermediately formed OH-benzene adduct with O(2). The HO(2) yield is slightly greater than the currently recommended yield of the proposed HO(2) co-product phenol (~53%). This hints towards other, minor HO(2) forming channels in the absence of NO, e.g. the formation of epoxide species that was proposed in the literature. For other test compounds upper limits of HO(2) yields of 0.10 (isoprene) and 0.05 (cyclohexane) were obtained, respectively. In further experiments at low O(2) concentrations (0.06-0.14% in N(2)) rate constants of (2.4 ± 1.1) × 10(-16) cm(3) s(-1) and (5.6 ± 1.1) × 10(-12) cm(3) s(-1) were estimated for the OH-benzene adduct reactions with O(2) and O(3), respectively. The rate constant of the unimolecular dissociation of the adduct back to benzene + OH was determined to be (3.9 ± 1.3) s(-1). The HO(2) yield at low O(2) was similar to that found in synthetic air, independent of O(2) and O(3) concentrations indicating comparable HO(2) yields for the adduct + O(2) and adduct + O(3) reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号