首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryu JS  Marks TJ  McDonald FE 《Organic letters》2001,3(20):3091-3094
[reaction: see text] This contribution reports the organolanthanide-catalyzed intramolecular hydroamination/cyclization of amines tethered to 1,2-disubstituted alkenes to afford the corresponding mono- and disubstituted pyrrolidines and piperidines by using coordinatively unsaturated complexes of the type (eta(5)-Me(5)C(5))(2)LnCH(TMS)(2) (Ln = La, Sm), [Me(2)Si(eta(5)-Me(4)C(5))(2)]NdCH(TMS)(2), [Et(2)Si(eta(5)-Me(4)C(5))(eta(5)-C(5)H(4))]NdCH(TMS)(2), and [Me(2)Si(eta(5)-Me(4)C(5))((t)()BuN)]LnE(TMS)(2) (Ln = Sm, Y, Yb, Lu; E = N, CH) as precatalysts. [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) mediates intramolecular hydroamination/cyclization of sterically demanding amino-olefins to afford disubstituted pyrrolidines in high diastereoselectivity (trans/cis = 16/1) and in good to excellent yield.  相似文献   

2.
3.
The complete catalytic reaction course for the organolanthanide-assisted intramolecular hydroamination/cyclization (IHC) of 4,5-heptadien-1-ylamine by a prototypical [(eta(5)-Me5C5)2LuCH(SiMe3)2] precatalyst has been critically scrutinized by employing a reliable DFT method. A computationally verified mechanistic scenario for the IHC of 1,3-disubstituted aminoallene substrates has been proposed that is consistent with the empirical rate law determined by experiment and accounts for crucial experimental observations. It involves kinetically rapid substrate association and dissociation equilibria, facile and reversible intramolecular allenic C=C insertion into the Ln-N bond, and turnover-limiting protonation of the azacycle's tether functionality, with the amine-amidoallene-Ln adduct complex representing the catalyst's resting state. This mechanistic scenario bears resemblance to the mechanism that has been recently proposed in a computational exploration of aminodiene IHC. The unique features of the IHC of the two substrate classes are discussed. Furthermore, the thermodynamic and kinetic factors that control the regio- and stereoselectivity of aminoallene IHC have been elucidated. These achievements have provided a deeper insight into the catalytic structure-reactivity relationships in organolanthanide-assisted cyclohydroamination of unsaturated C-C functionalities.  相似文献   

4.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   

5.
If Grignard had only known! A chiral magnesium complex catalyzes the intramolecular hydroamination/cyclization of aminoalkenes with high efficiency at temperatures as low as ?20?°C and enantioselectivities as high as 93?%?ee. The high activity of this system also allows the catalytic intermolecular anti-Markovnikov addition of pyrrolidine and benzylamine to vinyl arenes.  相似文献   

6.
The in situ preparation of chiral amido alkyl ate yttrium complexes from an array of chiral N-benzyl-like-substituted binaphthyldiamines is reported. These chiral heteroleptic complexes are shown to be efficient catalysts for the enantioselective intramolecular hydroamination of primary amines tethered to sterically demanding alkenes at high reaction temperatures. Fine tuning of their chiral environment allowed up to 77% ee to be reached for the cyclization of aminoalkenes bearing 1,2-dialkyl-substituted carbon-carbon double bonds. These chiral complexes also demonstrate the ability to promote the cyclization of amine-tethered trisubstituted alkenes in up to 55% ee, as the first report of the formation of enantioenriched quaternary centers by an hydroamination reaction.  相似文献   

7.
Organolanthanide complexes of the general type Cp'(2)LnCH(TMS)(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Sm, Y; TMS = SiMe(3)) and CGCSmN(TMS)(2) (CGC = Me(2)Si(eta(5)-Me(4)C(5))((t)()BuN)) serve as effective precatalysts for the rapid, regioselective, and highly diastereoselective intramolecular hydroamination/cyclization of primary and secondary amines tethered to conjugated dienes. The rates of aminodiene cyclizations are significantly more rapid than those of the corresponding aminoalkenes. This dienyl group rate enhancement as well as substituent group (R) effects on turnover frequencies is consistent with proposed transition state electronic demands. Kinetic and mechanistic data parallel monosubstituted aminoalkene hydroamination/cyclization, with turnover-limiting C=C insertion into the Ln-N bond to presumably form an Ln-eta(3) allyl intermediate, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [aminodiene]. However, depending on the particular substrate and catalyst combination, deviations from zero-order kinetic behavior reflect competitive product inhibition or self-inhibition by substrate. Lanthanide ionic radius effects and ancillary ligation effects on turnover frequencies suggest a sterically more demanding Ln-N insertion step than in aminoalkene cyclohydroamination, while a substantially more negative DeltaS( double dagger ) implies a more highly organized transition state. Good to excellent diastereoselectivity is obtained in the synthesis of 2,5-trans-disubstituted pyrrolidines (80% de) and 2,6-cis-disubstituted piperidines (99% de). Formation of 2-(prop-1-enyl)piperidine using the chiral C(1)-symmetric precatalyst (S)-Me(2)Si(OHF)(CpR)SmN(TMS)(2) (OHF = eta(5)-octahydrofluorenyl; Cp = eta(5)-C(5)H(3); R = (-)-menthyl) proceeds with up to 71% ee. The highly stereoselective feature of aminodiene cyclization is demonstrated by concise syntheses of naturally occurring alkaloids, (+/-)-pinidine and (+)-coniine from simple diene precursors.  相似文献   

8.
Intramolecular hydroamination of alkynyl amides was effected by a catalytic amount of Et2Zn (20 mol %) to form indole derivatives, and a tandem cyclization/nucleophilic addition procedure involving reaction of the indole zinc salt intermediate with acid chlorides or halides was developed to provide an efficient approach to C3-substituted indole derivatives when an excess of Et2Zn (120 mol %) was used.  相似文献   

9.
The enantioselective intramolecular aminative functionalization of unactivated alkenes and related π-systems is a straight-forward and atom economical strategy for the synthesis of chiral nitrogen heterocycles. These reactions can be categorized as oxidatively neutral, such as alkene hydroamination, or as oxidative reactions, such as alkene difunctionalization, e.g. aminooxygenation and carboamination. This perspective reviews the current work in the field and explores mechanistic trends that are common among the different catalysts and reaction types.  相似文献   

10.
The complete catalytic reaction course for the organolanthanide-mediated intramolecular hydroamination/cyclization (IHC) of (4E,6)-heptadien-1-amine by a prototypical achiral Cp*(2)LaCH(TMS)(2) precatalyst is critically scrutinized by employing a gradient-corrected DFT method. The condensed free-energy profile for the overall reaction, comprised of thermodynamic and kinetic aspects of individual elementary steps, is presented. A computationally verified, revised mechanistic scenario has been proposed, which is consistent with the empirical rate law, accounts for crucial experimental observations, and provides a first understanding of the origin of the measured negative DeltaS(++). It involves rapid substrate association/dissociation equilibria and facile intramolecular diene insertion, linked to turnover-limiting protonolysis of the eta(3)-butenyl-Ln functionality, with the amine-amidodiene-Ln adduct complex representing the catalyst's resting state. The thermodynamic and kinetic factors that determine the high regio- and stereoselectivity of the mechanistically diverse IHC of aminodienes have been elucidated. These achievements allow a deeper understanding and a consistent rationalization of the experimental results for aminodiene IHC and furthermore enhance the insights into general mechanistic aspects of the organolanthanide-mediated cycloamination.  相似文献   

11.
A series of "constrained geometry" organoactinide complexes, (CGC)An(NMe)2 (CGC = Me2Si(eta5-Me4C5)(tBuN); An = Th, 1; U, 2), has been prepared via efficient in situ, two-step protodeamination routes in good yields and high purity. Both 1 and 2 are quantitatively converted to the neutrally charged, solvent-free dichlorides (1-Cl2, 2-Cl2) and slightly more soluble diiodides (1-I2, 2-I2) with excess Me3Si-X (X = Cl, I) in non-coordinating solvents. The new complexes were characterized by NMR spectroscopy, elemental analysis, and (for 1 and 2) single-crystal X-ray diffraction, revealing substantially increased metal coordinative unsaturation vs the corresponding Me2SiCp' '2AnR2 (Cp' ' = eta5-Me4C5; An = Th, R = CH2(SiMe3), 3; An = U, R = CH2Ph, 4) and Cp'2AnR2 (Cp' = eta5-Me5C5 ; An = Th, R = CH2(SiMe3), 5; An = U, R = CH2(SiMe3), 6) complexes. Complexes 1-6 exhibit broad applicability for the intramolecular hydroamination of diverse C-C unsaturations, including terminal and internal aminoalkenes (primary and secondary amines), aminoalkynes (primary and secondary amines), aminoallenes, and aminodienes. Large turnover frequencies (Nt up to 3000 h-1) and high regioselectivities (>/=95%) are observed throughout, along with moderate to high diastereoselectivities (up to 90% trans ring closures). With several noteworthy exceptions, reactivity trends track relative 5f ionic radii and ancillary ligand coordinative unsaturation. Reactivity patterns and activation parameters are consistent with a reaction pathway proceeding via turnover-limiting C=C/CC insertion into the An-N sigma-bond.  相似文献   

12.
Chiral, cationic NHC–iridium complexes are introduced as catalysts for the intramolecular hydroamination reaction of unactivated aminoalkenes. The catalysts show high activity in the construction of a range of 5- and 6-membered N-heterocycles, which are accessed in excellent optical purity, with various functional groups being tolerated with this system. A major deactivation pathway is presented and eliminated by using alternative reaction conditions. A detailed experimental and computational study on the reaction mechanism is performed providing valuable insights into the mode of action of the catalytic system and pointing to future modifications to be made for this catalytic platform.

Chiral, cationic NHC–iridium complexes are introduced as catalysts for the intramolecular hydroamination reaction of unactivated aminoalkenes.  相似文献   

13.
In this paper, we deal with the scope and mechanism of the strong Br?nsted acid-catalyzed intramolecular cyclization reaction of methyl 3-aryl-2-nitropropionates to give 4H-1,2-benzoxazines. This reaction can be regarded as an oxygen functionalization of the aromatic ring wherein the oxygen atom is derived from the nitro group in the molecule, and it is favored by the presence of electron-withdrawing groups on the benzene ring. The reaction rate is strongly influenced by the acidity of the reaction medium, and the methyl ester group on the alpha-carbon atom with respect to the nitro group facilitates deprotonation at the alpha-position to give aci-nitro species in situ. Some correlation was found between the electron-withdrawing ability of the substituents on benzene, represented in terms of Hammett's sigma p value of the substituents, and the rate of disappearance of the starting substrate leading to the product in trifluoromethanesulfonic acid (TFSA)/trifluoroacetic acid (TFA) medium. This would be because the acidity of the alpha-proton with respect to the nitro group is influenced by the substituents on the benzene ring. Experimentally, we excluded the 6pi electrocyclization mechanism involving deprotonation of the benzyl proton of the protonated aci-nitro species. Alternative cyclization mechanisms involving equilibrating monocationic aci-nitro species bearing O-protonated ester carbonyl group and O-protonated aci-nitro species were calculated to be highly energetically unfavorable. Diprotonated or protosolvative species can reduce the activation energy significantly, and this is consistent with the observed acidity-dependent nature of the cyclization.  相似文献   

14.
An efficient, environmental friendly and substrate controlled method of synthesis of 2-substituted benzimidazole derivatives 3 and 1,2-disubstituted benzimidazole derivatives 4 with high selectivity has been achieved from the reaction of o-phenylenediamine 1 and aldehydes 2 in the presence of water extract of onion and selecting suitable reaction medium. This method is widely applicable for variety of aldehydes such as aromatic/aliphatic/heterocyclic aldehydes and 1,2-diamines to afford 2-substituted benzimidazole derivatives 3 and 1,2-disubstituted benzimidazole derivatives 4 in good to excellent yields (up to 96%). The developed method of water extract of onion catalysis produced 2-substituted benzimidazoles 3 from aromatic aldehydes having electron-withdrawing groups, whereas aromatic aldehydes bearing electron donating groups selectively furnished 1,2-disubstituted benzimidazole 4 derivatives. The process described here has several advantages of cheap, low energy consumption, commercially available starting materials, operational simplicity and nontoxic catalyst. The use of water extract of onion makes this present methodology green and giving a useful contribution to the existing methods available for the preparation of benzimidazole derivatives. In addition, Hammett correlation of substituent constant (σ) vs percentage (%) yield has been established.  相似文献   

15.
[La[N(SiHMe2)2]2[CH(PPh2NSiMe3)2]], which was obtained via an amine elimination starting from [CH2(PPh2NSiMe3)2] and [La[N(SiHMe2)2]3(THF)2], was used as catalyst for the hydroamination/cyclisation, the hydrosilylation and the sequential hydroamination/hydrosilylation reaction.  相似文献   

16.
A mechanistic study of intramolecular hydroamination/cyclization catalyzed by tetravalent organoactinide and organozirconium complexes is presented. A series of selectively substituted constrained geometry complexes, (CGC)M(NR2)Cl (CGC = [Me2Si(eta5-Me4C5)(tBuN)]2-; M = Th, 1-Cl; U, 2-Cl; R = SiMe3; M = Zr, R = Me, 3-Cl) and (CGC)An(NMe2)OAr (An = Th, 1-OAr; An = U, 2-OAr), has been prepared via in situ protodeamination (complexes 1-2) or salt metathesis (3-Cl) in high purity and excellent yield and is found to be active precatalysts for intramolecular primary and secondary aminoalkyne and aminoalkene hydroamination/cyclization. Substrate reactivity trends, rate laws, and activation parameters for cyclizations mediated by these complexes are virtually identical to those of more conventional (CGC)MR2 (M = Th, R = NMe2, 1; M = U, R = NMe2, 2; M = Zr, R = Me, 3), (Me2SiCp' '2)UBn2 (Cp' ' = eta5-Me4C5; Bn = CH2Ph, 4), Cp'2AnR2 (Cp' = eta5-Me5C5; R = CH2SiMe3; An = Th, 5, U, 6), and analogous organolanthanide complexes. Deuterium KIEs measured at 25 degrees C in C6D6 for aminoalkene D2NCH2C(CH3)2CH2CHCH2 (11-d2) with precatalysts 2 and 2-Cl indicate that kH/kD = 3.3(5) and 2.6(4), respectively. Together, the data provide strong evidence in these systems for turnover-limiting C-C insertion into an M-N(H)R sigma-bond in the transition state. Related complexes (Me2SiCp' '2)U(Bn)(Cl) (4-Cl) and Cp'2An(R)(Cl) (R = CH2(SiMe3); An = Th, 5-Cl; An = U, 6-Cl) are also found to be effective precatalysts for this transformation. Additional arguments supporting M-N(H)R intermediates vs M=NR intermediates are presented.  相似文献   

17.
The scope of CCC-NHC pincer complex synthetic methodology by metalation/transmetalation has been extended to Ir. Structural characterization revealed that it is isomorphous with the Rh complex. Both Rh and Ir complexes are efficient catalysts for the hydroamination/cyclization of secondary amines in the presence of air and/or water.  相似文献   

18.
The synthesis of the new chiral, pseudo C3-symmetric, monoanionic ligand tris(4S-tert-butyl-2-oxazolinyl)phenylborate [ToT] is reported. The steric bulk, tridentate coordination, and anionic charge of [ToT] are suitable for formation of complexes of the type ToTMX, where one valence is available for reactivity. With this point in mind, we prepared magnesium and calcium ToT complexes that resist redistribution to (ToT)2M compounds. Both ToTMgMe and ToTCaC(SiHMe2)3 contain tridentate ToT-coordination to the metal center, as shown by NMR spectroscopy, infrared spectroscopy, and X-ray crystallography. These compounds are active catalysts for the cyclization of three aminoalkenes to pyrrolidines, and provide non-racemic mixtures of pyrrolidines in enantiomeric excesses up to 36%.  相似文献   

19.
Indolizine, pyrrolone, and indolizinone heterocycles are easily accessed via the Pt(II)-catalyzed cycloisomerization or a tandem cyclization/1,2-migration of pyridine propargylic alcohols and derivatives. This method provides an efficient synthesis of highly functionalized heterocycles from readily available substrates. [reaction: see text]  相似文献   

20.
Pyridinium 1a underwent an efficient intramolecular cyclization initiated by fluoride ions to form highly fluorescent 1,3,4-triphenylpyrido[1,2-a]benzimidazole, providing a novel chemodosimeter for fluoride ions detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号