首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial metabolites have many important applications in pharmaceutical and health-care industry. The products of microbial origin are usually produced by submerged fermentation. The solid-state fermentation represents an alternative mode of fermentation, which is increasingly being employed as an alternative to submerged fermentation for metabolite production. The prospect of producing high-value product using low-value raw material offers a substantial premium to switch to these technologies. The cost of statins being one major factor, solid-state fermentation with agro-industrial residues as carbon, nitrogen and support matrix, promises to substantially lower the cost of production. Hence, newer approaches are required to exploit the agro-industrial residues for statin production. The development of these technologies offers an opportunity to exploit low-cost substrates without substantial investment in newer production methodologies. The emerging evidence of beneficial effect of statins in applications other than lipid lowering such as in Alzheimer disease, HIV, age-related dementia, and cancer chemotherapy makes it very important to develop methods for economic production of statins.  相似文献   

2.
Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (°P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 °C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 22 full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.  相似文献   

3.
Green waste, e.g., grass clippings, is currently insufficiently recycled and has untapped potential as a valuable resource. Our aim was to use juice from grass clippings as a growth medium for microorganisms. Herein, we demonstrate the production of the sesquiterpene α-humulene with the versatile organism Cupriavidus necator pKR-hum on a growth medium from grass clippings. The medium was compared with established media in terms of microbial growth and terpene production. C. necator pKR-hum shows a maximum growth rate of 0.43 h−1 in the grass medium and 0.50 h−1 in a lysogeny broth (LB) medium. With the grass medium, 2 mg/L of α-humulene were produced compared to 10 mg/L with the LB medium. By concentrating the grass medium and using a controlled bioreactor in combination with an optimized in situ product removal, comparable product concentrations could likely be achieved. To the best of our knowledge, this is the first time that juice from grass clippings has been used as a growth medium without any further additives for microbial product synthesis. This use of green waste as a material represents a new bioeconomic utilization option of waste materials and could contribute to improving the economics of grass biorefineries.  相似文献   

4.
Fructo-oligosaccharides (FOS) are prebiotics with numerous health benefits. So far, the dissolved oxygen (DO) concentration control strategy for fermentative production of FOS is still unknown. In order to improve FOS production, the effects of DO concentration and fermentation mode on FOS using Aureobasidium pullulans were investigated in this study. The greatest FOS production (123.2 ± 6.2 g/L), with a yield of 61.6% ± 3.0% (g FOS/g sucrose), was obtained in batch culture under high DO concentration. Furthermore, repeated-batch culture revealed that enzyme production and FOS production were not closely associated with cell growth. By keeping the DO concentration above 5% in the repeated-batch culture, a maximum FOS concentration of 548.3 ± 37.4 g/L and yield of 68.6% ± 2.6% (g FOS/g sucrose) were obtained, which were 3.45% and 11.4% times higher than those obtained in the batch culture without DO control, respectively. Additionally, the ratios of 1-fructofuranosyl nystose (GF4) and 1,1,1,1-kestohexose (GF5) were 33.8% and 23.2%, respectively, in the product of repeated-batch culture, but these compounds were not detected in batch culture. Thus, it can be concluded that the DO concentration affects not only the yield of FOS but also the composition of FOS with different degrees of polymerization, which is the key factor in the fermentative production of FOS with a high polymerization degree.  相似文献   

5.
Concentrated acid hydrolysis of cellulosic material results in high dissolution yields. In this study, the neutralization step of concentrated acid hydrolysate of conifer pulp was optimized. Dry conifer pulp hydrolysis with 55?% H2SO4 at 45?°C for 2?h resulted in total sugar yields of 22.3?C26.2?g/L. The neutralization step was optimized for solid Ca(OH)2, liquid Ca(OH)2 or solid CaO, mixing time, and water supplementation. The highest hydrogen yield of 1.75?mol?H2/mol glucose was obtained with liquid Ca(OH)2, while the use of solid Ca(OH)2 or CaO inhibited hydrogen fermentation. Liquid Ca(OH)2 removed sulfate to below 30?mg SO4 2?/L. Further optimization of the neutralization conditions resulted in the yield of 2.26?mol?H2/mol glucose.  相似文献   

6.
The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903?bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H3PO4?Cacetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50?°C, pH?5.4 with stability over a pH range of 5.0?C6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid?Cacetone technique. The maximum ethanol concentration (1.44?g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32?g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11?g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1?L working volume.  相似文献   

7.
The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.  相似文献   

8.
In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.  相似文献   

9.
Banana is a fruit grown mainly in tropical countries of the world. After harvest, almost 60% of banana biomass is left as waste. Worldwide, about 114.08 million metric tons of banana waste-loss are produced, leading to environmental problems such as the excessive emission of greenhouse gases. These wastes contain a high content of paramount industrial importance, such as cellulose, hemicellulose and natural fibers that various processes can modify, such as bacterial fermentation and anaerobic degradation, to obtain bioplastics, organic fertilizers and biofuels such as ethanol, biogas, hydrogen and biodiesel. In addition, they can be used in wastewater treatment methods by producing low-cost biofilters and obtaining activated carbon from rachis and banana peel. Furthermore, nanometric fibers commonly used in nanotechnology applications and silver nanoparticles useful in therapeutic cancer treatments, can be produced from banana pseudostems. The review aims to demonstrate the contribution of the recovery of banana production waste-loss towards a circular economy that would boost the economy of Latin America and many other countries of emerging economies.  相似文献   

10.
Xanthan gum production was studied using sugarcane broth as the raw material and batch fermentation by Xanthomonas campestris pv. campestris NRRL B-1459. The purpose of this study was to optimize the variables of sucrose, yeast extract, and ammonium nitrate concentrations and to determine the kinetic parameters of this bioreaction under optimized conditions. The effects of yeast extract and ammonium nitrate concentrations for a given sucrose concentration (12.1–37.8 g L?1) were evaluated by central composite design to maximize the conversion efficiency. In a bioreactor, the maximum conversion efficiency was achieved using 27.0 g L?1 sucrose, 2.7 g L?1 yeast extract, and 0.9 g L?1 NH4NO3. This point was assayed in a shaker and in a bioreactor to compare bioreaction parameters. These parameters were estimated by the unstructured kinetic model of Weiss and Ollis (Biotechnol Bioeng 22:859–873, 1980) to determinate the yields (Y P/S), the maximum growth specific rate (μ max), and the saturation cellular concentration (X*). The parameters of the model (μ max, X*, m, λ, α, and β) were obtained by nonlinear regression. For production of xanthan gum in a shaker, the values of μ max and Y P/S obtained were 0.119 h?1 and 0.34 g g?1, respectively, while in a bioreactor, they were 0.411 h?1 and 0.63 g g?1, respectively.  相似文献   

11.
采用高效液相色谱法测定香蕉中的多菌灵、噻菌灵、甲基硫菌灵。样品经乙腈提取、硅胶柱净化后用HPLC法测定,外标法定量。对样品前处理和色谱分析条件进行了研究和优化。3种杀菌剂在确定的浓度范围内线性良好,相关系数r≥0.999。添加3个浓度水平标准品的回收率分别为:多菌灵80.5%~91.2%,噻菌灵81.2%~86.9%.68.9%~72.6%。该法对多菌灵、噻菌灵、甲基硫菌灵3种杀菌剂的检出限较低,分别为0.008,0.009,0.015mg/kg。该方法可满足香蕉中多菌灵、噻菌灵、甲基硫菌灵的残留限量检测要求。  相似文献   

12.
刘姣  夏仕文  黄文薪 《分子催化》2023,37(3):285-292
以解木糖赖氨酸芽孢杆菌XX-2为出发菌株,110mmol/L L-赖氨酸单盐酸盐为发酵前体,144h发酵后L-2-氨基己二酸浓度达到10.4mmol/L,产率9.5%。以解木糖赖氨酸芽孢杆菌XX-2全细胞为生物催化剂,利用共生的L-赖氨酸 6-脱氢酶和?-1-哌啶啉-6-羧酸脱氢酶催化L-赖氨酸单盐酸盐转化为L-2-氨基己二酸。最优条件为:细胞浓度45g(干重)/L,L-赖氨酸单盐酸盐浓度100mmol/L,pH7.0,温度30℃,反应时间144h。在最优条件下,从100mmol/LL-赖氨酸单盐酸盐产生90mmol/L L-2-氨基己二酸,产率90%。推测了生物催化过程中L-2-氨基己二酸产生的反应机理。  相似文献   

13.
马欢  刘伟伟  朱苏文  樊芸杉  程备久 《化学学报》2012,70(22):2353-2358
以芭蕉叶作为结构模板,通过微波辐照-HCl耦合预处理、原位生长及变温去模板过程,制备了具有分级多孔结构的TiO2光催化材料.通过环境电子扫描显微镜(FESEM)、透射电镜(TEM)、X射线衍射(XRD)及N2吸附-脱附表征.结果表明:芭蕉叶-TiO2材料不仅具有模板的维管束管状结构、大孔阵列及管壁内外宽度为100 nm左右的层状褶皱结构,而且还具有典型的介孔结构,平均孔径为13.03 nm,材料比表面积为66.5 m2 g-1.以染料亚甲基蓝(MB,C16H18ClN3S 3H2O)作为模型,评价材料的吸附性能和光催化性能.结果显示:与DegussaP25及无模板的普通TiO2相比,芭蕉叶-TiO2表现出较强的吸附性能和光催化活性;对亚甲基蓝吸附率达30%,为P25的4.3倍,普通TiO2的15倍;其光催化速率分别为P25和普通TiO2的1.5倍和4倍之多.  相似文献   

14.
15.
Trichomonas vaginalis generates reduced ferredoxin within a unique subcellular organelle, hydrogenosome that is used as a reductant for H2 production. Pyruvate ferredoxin oxidoreductase and NADH dehydrogenase (NADH-DH) are the two enzymes catalyzing the production of reduced ferredoxin. The genes encoding the two subunits of NADH-DH were cloned and expressed in Escherichia coli. Kinetic properties of the recombinant heterodimer were similar to that of the native enzyme from the hydrogenosome. The recombinant holoenzyme contained 2.15 non-heme iron and 1.95 acid-labile sulfur atoms per heterodimer. The EPR spectrum of the dithionite-reduced protein revealed a [2Fe–2S] cluster with a rhombic symmetry of g xyz?=?1.917, 1.951, and 2.009 corresponding to cluster N1a of the respiratory complex I. Based on the Fe content, absorption spectrum, and the EPR spectrum of the purified small subunit, the [2Fe–2S] cluster was located in the small subunit of the holoenzyme. This recombinant NADH-DH oxidized NADH and reduced low redox potential electron carriers, such as viologen dyes as well as Clostridium ferredoxin that can couple to hydrogenase for H2 production from NADH. These results show that this unique hydrogenosome NADH dehydrogenase with a critical role in H2 evolution in the hydrogenosome can be produced with near-native properties in E. coli for metabolic engineering of the bacterium towards developing a dark fermentation process for conversion of biomass-derived sugars to H2 as an energy source.  相似文献   

16.
Melatonin is a hormone secreted in the pineal gland with several functions, especially regulation of circadian sleep cycle and the biological processes related to it. This review evaluates the bioavailability of melatonin and resulting metabolites, the presence of melatonin in wine and beer and factors that influence it, and finally the different benefits related to treatment with melatonin. When administered orally, melatonin is mainly absorbed in the rectum and the ileum; it has a half-life of about 0.45–1 h and is extensively inactivated in the liver by phase 2 enzymes. Melatonin (MEL) concentration varies from picograms to ng/mL in fermented beverages such as wine and beer, depending on the fermentation process. These low quantities, within a dietary intake, are enough to reach significant plasma concentrations of melatonin, and are thus able to exert beneficial effects. Melatonin has demonstrated antioxidant, anticarcinogenic, immunomodulatory and neuroprotective actions. These benefits are related to its free radical scavenging properties as well and the direct interaction with melatonin receptors, which are involved in complex intracellular signaling pathways, including inhibition of angiogenesis and cell proliferation, among others. In the present review, the current evidence on the effects of melatonin on different pathophysiological conditions is also discussed.  相似文献   

17.
In this study, effect of various parameters on sophorolipid (SL) production by the yeast Candida bombicola was investigated for the enhancing of its production by employing L18 orthogonal array design of experiments. At optimum conditions of sugarcane molasses 50 g l−1, soybean oil 50 g l−1, inoculum size 5% (v/v), temperature 30 °C, inoculum age 2 days, and agitation 200 rpm, the yeast produced almost equal amounts of the product in batch shake flasks and in a 3-l fermentor without any pH control (45 and 47 g l−1, respectively). However, the yield increased to 60 g l−1 in the fermentor under controlled pH environment. Time course of SL production, yeast biomass growth, and utilization of sugarcane molasses and soybean oil at these optimized conditions were fitted to existing kinetic models reported in the literature. Estimated kinetic parameters from these models suggested that conventional medium containing glucose can very well be replaced with the present low-cost fermentative medium.  相似文献   

18.
Essential oils (EOs) have been used for centuries, and interest in these compounds has been revived in recent years. Due to their unique chemical composition as well as antimicrobial, immunostimulatory, anti-inflammatory and antioxidant properties, EOs are used in pharmacology, cosmetology and, increasingly, in animal breeding and rearing, and processing of animal raw materials. Essential oils have become a natural alternative to preservatives, taste enhancers and, most importantly, antibiotics, because the European Union banned the use of antibiotics in metaphylaxis in animal husbandry in 2006. In the animal production chain, EOs are used mainly as feed additives to improve feed palatability and increase feed intake, improve animal resistance and health status, and to prevent and treat diseases. Recent research indicates that EOs can also be applied to sanitize poultry houses, and they can be used as biopesticides in organic farming. Essential oils effectively preserve meat and milk and, consequently, improve the safety, hygiene and quality of animal-based foods. Novel technologies such as encapsulation may increase the bioavailability of EOs and their application in the production of food and feed additives.  相似文献   

19.
This study evaluates the potential for using different effluents for simultaneous H2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H2 was produced from parboiled rice wastewater (23.9?mL g?1 chemical oxygen demand [COD]) and vinasse (20.8?mL g?1 COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3?mL g?1 COD), followed by parboiled rice wastewater (115.5?mL g?1 COD) and glycerol (180.1?mL g?1 COD). The maximum amount of CH4 was observed for vinasse (255.4?mL g?1 COD). The total energy recovery from vinasse (10.4?kJ g?1 COD) corresponded to the maximum COD reduction (74.7?%), followed by glycerol (70.38?%, 7.20?kJ g?1 COD), parboiled rice wastewater (63.91?%, 4.92?kJ g?1 COD), and sewage (51.11?%, 1.85?kJ g?1 COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H2 and CH4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号