共查询到20条相似文献,搜索用时 12 毫秒
1.
生物质半纤维素稀酸水解反应 总被引:7,自引:0,他引:7
半纤维素是木质纤维素类生物质中第二大组分,半纤维素的高效、低成本转化是实现木质纤维素类生物质转化工艺实用化的一个技术关键。稀酸水解技术被广泛应用于水解生物质半纤维素,其对半纤维素糖的转化率高,得到的糖可进一步发酵生产燃料乙醇等。半纤维素还可直接水解制低聚糖等功能性食品和糠醛等化工产品。本文综述了半纤维素稀酸水解反应的研究进展。介绍了半纤维素的基本结构特征,解析了稀酸催化半纤维素水解的反应机理及反应网络,评述了半纤维素水解过程中反应条件等对目标产物的影响,并总结了半纤维素稀酸水解动力学模型。在此基础上,对今后半纤维素稀酸水解反应的研究方向与水解产物的利用进行了展望。 相似文献
2.
Ortwin Bobleter Wolfgang Schwald Roland Concin Hanno Binder 《Journal of carbohydrate chemistry》2013,32(3):387-399
The sulfuric acid hydrolysis rate of cellobiose between pH 2 and 3 is directly proportional to the acid concentration. In good agreement with other authors, an activation energy of 133 kJ/Mol was found under these acidic conditions. The relation of the reaction rate constants for the glucose formation and glucose degradation (k1/k2) shows, in contrast to the hydrolysis of cellulose, little dependence on the temperature. Hydroxymethylfurfural, and to a lesser extent furfural, are glucose degradation products, which are also consumed but at a lower reaction rate than glucose. At pH values between 3 and 4.7 (pure water) strong deviations of the hydrolysis rates were observed. The formation of organic acids decreases the pH but has no influence on the reaction rate. This fact indicates that hydrothermolysis follows a reaction mechanism different from that of acidic hydrolysis. 相似文献
3.
I. S. M. Rafiqul A. M. M. Sakinah M. R. Karim 《Applied biochemistry and biotechnology》2014,174(2):542-555
Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively. 相似文献
4.
Ozlem Akpinar Okan Levent Şeyda Bostanci Ufuk Bakir Levent Yilmaz 《Applied biochemistry and biotechnology》2011,163(2):313-325
Cotton stalk, a lignocellulosic waste material, is composed of xylose that can be used as a raw material for production of
xylitol, a high-value product. There is a growing interest in the use of lignocellulosic wastes for conversion into various
chemicals because of their low cost and the fact that they are renewable and abundant. The objective of the study was to determine
the effects of H2SO4 concentration, temperature, and reaction time on the production of sugars (xylose, glucose, and arabinose) and on the reaction
by-products (furfural and acetic acid). Response surface methodology was used to optimize the hydrolysis process in order
to obtain high xylose yield and selectivity. The optimum reaction temperature, reaction time, and acid concentration were
140 °C, 15 min, and 6%, respectively. Under these conditions, xylose yield and selectivity were found to be 47.88% and 2.26 g
g−1, respectively. 相似文献
5.
In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples. 相似文献
6.
7.
8.
以玉米秸秆为研究对象,经过2%硫酸预处理后,利用果胶酶、β-葡萄糖苷酶、纤维素酶三种酶协同酶解,以提高玉米秸秆的酶解产糖量。结果表明:当酶解时间为48h,果胶酶、β-葡萄糖苷酶、纤维素酶分别为45U/mL、30U/mL、60U/mL时,葡萄糖、木糖和酶水解得率分别为67.83%、3.25%、73.65%,相比纤维素酶单一酶解的葡萄糖、木糖和酶水解得率分别提高了65.04%、20.82%、65.06%。分步糖化发酵5天后,相比单一酶解发酵乙醇含量提高了72.5%。说明利用三种酶复合处理,能明显提高酶解产糖量。研究结果为玉米秸秆转化为可发酵糖技术的研究提供重要参考。 相似文献
9.
研究了以麦秆为原料用水解-氧化-水解法制取草酸的工艺方法。最佳反应条件:麦秆用量50g,硫酸浓度70%,物料浸泡时间≥3h,m(硝酸):m(麦秆)=2.1:1.0;氧化催化剂V2O5-FeCl3[n(V2O5):n(FeCl3)=1:1]用量0.1g,氧化-水解反应时间5h,反应温度65℃~70℃,草酸二水合物收率75.5%。 相似文献
10.
Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis.
The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing
generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15–20% will be
necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of
the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both
enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry
with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose
conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%. 相似文献
11.
Nadja Schultz-Jensen Frank Leipold Henrik Bindslev Anne Belinda Thomsen 《Applied biochemistry and biotechnology》2011,163(4):558-572
O3 generated in a plasma at atmospheric pressure and room temperature, fed with dried air (or oxygen-enriched dried air), has been used for the degradation of lignin in wheat straw to optimize the enzymatic hydrolysis and to get more fermentable sugars. A fixed bed reactor was used combined with a CO2 detector and an online technique for O3 measurement in the fed and exhaust gas allowing continuous measurement of the consumption of O3. This rendered it possible for us to determine the progress of the pretreatment in real time (online analysis). The process time can be adjusted to produce wheat straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content and milled particle size (the extent to which the wheat straw was milled) were investigated and optimized. The developed methodology offered the advantage of a simple and relatively fast (0.5–2 h) pretreatment allowing a dry matter concentration of 45–60%. FTIR measurements did not suggest any structural effects on cellulose and hemicellulose by the O3 treatment. The cost and the energy consumption for lignin degradation of 100 g of wheat straw were calculated. 相似文献
12.
Pretreatment of corn stover with dilute sulfuric acid at moderate temperature was investigated, and glucan digestibility by Cellic CTec2 and Celluclast on the pretreated biomass was compared. Pretreatments were carried out from 60 to 180 min at the temperature from 105 to 135 °C, with acid concentrations ranging from 0.5 to 2 % (w/v). Significant portion of xylan was removed during pretreatment, and the glucan digestibility by CTec2 was significantly better than that by Celluclast in all cases. Analysis showed that glucan digestibility by both two enzymes correlated directly with the extent of xylan removal in pretreatment. Confidence interval was built to give a more precise range of glucan conversion and to test the significant difference among pretreatment conditions. Response surface model was built to obtain the optimal pretreatment condition to achieve high glucan conversion after enzymatic hydrolysis. Considering the cost and energy savings, the optimal pretreatment condition of 1.75 % acid for 160 min at 135 °C was determined, and glucan conversion can achieve the range from 72.86 to 76.69 % at 95 % confidence level after enzymatic hydrolysis, making total glucan recovery up to the range from 89.42 to 93.25 %. 相似文献
13.
秸秆纤维素的一步快速提取和水解 总被引:4,自引:0,他引:4
研究了秸秆纤维素的一步快速提取方法, 在醋酸和硝酸溶液体系中, 选择10种不同的反应条件, 进行了提取条件优选, 然后对提取的纤维素样品分别进行了水解. 结果发现, 纤维素提取的最佳条件为120 ℃, 固液比为1∶25, 在体积分数为80%的醋酸和10%的硝酸混合溶液中反应20 min, 纤维素的产率为38%. 纤维素样品的水解实验发现, 在最佳条件下提取样品的葡萄糖含量都大于90%, 水解率达到94%. 13C NMR和FTIR分析结果表明, 纤维素的分子结构未被破坏, 但纤维素Ⅰβ含量较高, 木质素和半纤维素的去除率都很高, 表明此方法是比较理想的制备高纯度纤维素的方法. 相似文献
14.
Kim P. P. Pastukhova G. V. Peretrutov A. A. 《Russian Journal of Applied Chemistry》2001,74(1):167-169
The statics and kinetics of hydrolysis of nitrosylsulfuric acid were studied at the initial sulfuric acid concentrations in the range 60-76 wt % and temperatures in the range 20-100°C or 30-130°C. The results were compared with the published data. 相似文献
15.
Ramkumar B. Nair Maryam M. Kabir Patrik R. Lennartsson Mohammad J. Taherzadeh Ilona Sárvári Horváth 《Applied biochemistry and biotechnology》2018,184(1):48-62
Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. 相似文献
16.
Pavle Andri? Anne S. Meyer Peter A. Jensen Kim Dam-Johansen 《Applied biochemistry and biotechnology》2010,160(1):280-297
The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw with the cellulolytic enzyme system, Celluclast? 1.5 L, from Trichoderma reesei, supplemented with a β-glucosidase, Novozym? 188, from Aspergillus niger. Addition of glucose (0–40 g/L) significantly decreased the enzyme-catalyzed glucose formation rates and final glucose yields, in a dose-dependent manner, during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48–72 h of reaction recovered from 20–40% to become ≈70% of the rate recorded during 6–24 h of reaction. Although Michaelis–Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis–Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis–Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product removal during enzymatic hydrolysis of lignocellulose. 相似文献
17.
Cellulase distribution between residual substrate and supernatant in the process of enzymatic hydrolysis of steam-exploded
wheat straw was investigated. Subsequently, a novel stepwise recovery strategy with three successive steps was adopted to
recover cellulase adsorbed to the residual substrate. The results showed that cellulase protein in the supernatant increased
as the hydrolysis time increased. When hydrolysis ended, the cellulase remaining on the residual substrate accounted for 33–42%
of the original added cellulase according to the different cellulase loading. To obtain the maximum cellulase recovery rate,
the residual substrate was dealt with in three successive steps: washed with sodium acetate buffer (step 1), shaken with sodium
acetate buffer (step 2), and then treated with 0.0015 mol/L, pH 10 Ca(OH)2 (step 3). The total cellulase protein recovered by the three steps reached 96.70–98.14%. The enzyme activity of cellulase
recovered by the first two steps was kept well. The ratios of the specific activity between the recovered cellulase and the
original were 89–96%, which was by far higher than that using step 3 (the value was 48% ∼ 56%). 相似文献
18.
Hui-Min David Wang Yu-Shen Cheng Chi-Hao Huang Chia-Wei Huang 《Applied biochemistry and biotechnology》2016,178(4):753-765
Soluble coffee, being one of the world’s most popular consuming drinks, produces a considerable amount of spent coffee ground (SCG) along with its production. The SCG could function as a potential lignocellulosic feedstock for production of bioproducts. The objective of this study is to investigate the possible optimal condition of dilute acid hydrolysis (DAH) at high solids and mild temperature condition to release the reducing sugars from SCG. The optimal condition was found to be 5.3 % (w/w) sulfuric acid concentration and 118 min reaction time. Under the optimal condition, the mean yield of reducing sugars from enzymatic saccharification of defatted SCG acid hydrolysate was 563 mg/g. The SCG hydrolysate was then successfully applied to culture Lipomyces starkeyi for microbial oil fermentation without showing any inhibition. The results suggested that dilute acid hydrolysis followed by enzymatic saccharification has the great potential to convert SCG carbohydrates to reducing sugars. This study is useful for the further developing of biorefinery using SCG as feedstock at a large scale. 相似文献
19.
Pedro M. A. Pereira Joana R. Bernardo Luisa Bivar Roseiro Francisco Gírio Rafa M. ukasik 《Molecules (Basel, Switzerland)》2021,26(24)
Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass conversion. In the present work, an imidazole pre-treatment process was performed and evaluated using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however, better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues. The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 °C and 4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses (ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different pre-treatments, revealed that results improved with increasing temperature/time for wheat straw. However, these conditions had no influence on the results for eucalyptus residues, with very low glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues). Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment. 相似文献