首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
A novel metaheuristics approach for continuous global optimization   总被引:3,自引:0,他引:3  
This paper proposes a novel metaheuristics approach to find the global optimum of continuous global optimization problems with box constraints. This approach combines the characteristics of modern metaheuristics such as scatter search (SS), genetic algorithms (GAs), and tabu search (TS) and named as hybrid scatter genetic tabu (HSGT) search. The development of the HSGT search, parameter settings, experimentation, and efficiency of the HSGT search are discussed. The HSGT has been tested against a simulated annealing algorithm, a GA under the name GENOCOP, and a modified version of a hybrid scatter genetic (HSG) search by using 19 well known test functions. Applications to Neural Network training are also examined. From the computational results, the HSGT search proved to be quite effective in identifying the global optimum solution which makes the HSGT search a promising approach to solve the general nonlinear optimization problem.  相似文献   

2.
Several meta-heuristic algorithms, such as evolutionary algorithms (EAs) and genetic algorithms (GAs), have been developed for solving feature selection problems due to their efficiency for searching feature subset spaces in feature selection problems. Recently, hybrid GAs have been proposed to improve the performance of conventional GAs by embedding a local search operation, or sequential forward floating search mutation, into the GA. Existing hybrid algorithms may damage individuals’ genetic information obtained from genetic operations during the local improvement procedure because of a sequential process of the mutation operation and the local improvement operation. Another issue with a local search operation used in the existing hybrid algorithms is its inappropriateness for large-scale problems. Therefore, we propose a novel approach for solving large-sized feature selection problems, namely, an EA with a partial sequential forward floating search mutation (EAwPS). The proposed approach integrates a local search technique, that is, the partial sequential forward floating search mutation into an EA method. Two algorithms, EAwPS-binary representation (EAwPS-BR) for medium-sized problems and EAwPS-integer representation (EAwPS-IR) for large-sized problems, have been developed. The adaptation of a local improvement method into the EA speeds up the search and directs the search into promising solution areas. We compare the performance of the proposed algorithms with other popular meta-heuristic algorithms using the medium- and large-sized data sets. Experimental results demonstrate that the proposed EAwPS extracts better features within reasonable computational times.  相似文献   

3.
In this paper, we focus on heuristic approaches for solving the deterministic job shop scheduling problem. More specifically, a new priority dispatch rule and hybrid rollout algorithms are developed for approaching the problem under consideration. The proposed solution algorithms are tested on a set of instances taken from the literature and compared with other methods. The computational results validate the effectiveness of the developed solution approaches and show that the proposed rollout algorithms are competitive with respect to several state-of-art heuristics for solving the job shop scheduling problem. The author thanks Dr. Marco Mancini and Dr. Alessandro Tarasio for valuable suggestions about computational issues.  相似文献   

4.
This paper presents a genetic algorithms (GA) simulation approach in solving a multi-attribute combinatorial dispatching (MACD) decision problem in a flow shop with multiple processors (FSMP) environment. The simulation is capable of modeling a non-linear and stochastic problem. GA are one of the commonly used metaheuristics and are a proven tool for solving complex optimization problems. The proposed GA simulation approach addresses a complex MACD problem. Its solution quality is illustrated by a case study from a multi-layer ceramic capacitor (MLCC) manufacturing plant. Because GA search results are often sensitive to the search parameters, this research optimized the GA parameters by using regression analysis. Empirical results showed that the GA simulation approach outperformed several commonly used dispatching rules. The improvements are ranging from 33% to 61%. On the other hand, the increased shop-floor-control complexity may hinder the implementation of the system. Finally, future research directions are discussed.  相似文献   

5.
In this paper, we describe an approach for solving the quadratic assignment problem (QAP) that is based on genetic algorithms (GA). It will be shown that a standard canonical GA (SGA), which involves genetic operators of selection, reproduction, crossover, and mutation, tends to fall short of the desired performance expected of a search algorithm. The performance deteriorates significantly as the size of the problem increases. To address this syndrome, it is common for GA-based techniques to be embedded with deterministic local search procedures. It is proposed that the local search should involve simple procedure of genome reordering that should not be too complex. More importantly, from a computational point of view, the local search should not carry with it the full cost of evaluating a chromosome after each move in the localized landscape. Results of simulation on several difficult QAP benchmarks showed the effectiveness of our approaches.  相似文献   

6.
In this paper, we discuss the scheduling of jobs with incompatible families on parallel batching machines. The performance measure is total weighted tardiness. This research is motivated by a scheduling problem found in the diffusion and oxidation areas of semiconductor wafer fabrication where the machines can be modelled as parallel batch processors. Given that this scheduling problem is NP-hard, we suggest an ant colony optimization (ACO) and a variable neighbourhood search (VNS) approach. Both metaheuristics are hybridized with a decomposition heuristic and a local search scheme. We compare the performance of the two algorithms with that of a genetic algorithm (GA) based on extensive computational experiments. The VNS approach outperforms the ACO and GA approach with respect to time and solution quality.  相似文献   

7.
A robust search algorithm should ideally exhibit reasonable performance on a diverse and varied set of problems. In an earlier paper Lim et al. (Computational Optimization and Applications, vol. 15, no. 3, 2000), we outlined a class of hybrid genetic algorithms based on the k-gene exchange local search for solving the quadratic assignment problem (QAP). We follow up on our development of the algorithms by reporting in this paper the results of comprehensive testing of the hybrid genetic algorithms (GA) in solving QAP. Over a hundred instances of QAP benchmarks were tested using a standard set of parameters setting and the results are presented along with the results obtained using simple GA for comparisons. Results of our testing on all the benchmarks show that the hybrid GA can obtain good quality solutions of within 2.5% above the best-known solution for 98% of the instances of QAP benchmarks tested. The computation time is also reasonable. For all the instances tested, all except for one require computation time not exceeding one hour. The results will serve as a useful baseline for performance comparison against other algorithms using the QAP benchmarks as a basis for testing.  相似文献   

8.
This paper develops an efficient heuristic to solve the non-homogeneous redundancy allocation problem for multi-state series-parallel systems. Non identical components can be used in parallel to improve the system availability by providing redundancy in subsystems. Multiple component choices are available for each subsystem. The components are binary and chosen from a list of products available on the market, and are characterized in terms of their cost, performance and availability. The objective is to determine the minimal-cost series-parallel system structure subject to a multi-state availability constraint. System availability is represented by a multi-state availability function, which extends the binary-state availability. This function is defined as the ability to satisfy consumer demand that is represented as a piecewise cumulative load curve. A fast procedure is used, based on universal generating function, to evaluate the multi-state system availability. The proposed heuristic approach is based on a combination of space partitioning, genetic algorithms (GA) and tabu search (TS). After dividing the search space into a set of disjoint subsets, this approach uses GA to select the subspaces, and applies TS to each selected subspace. The design problem, solved in this study, has been previously analyzed using GA. Numerical results for the test problems from previous research are reported, and larger test problems are randomly generated. These results show that the proposed approach is efficient both in terms of both of solution quality and computational time, as compared to existing approaches.  相似文献   

9.
Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution.  相似文献   

10.
The mechanical properties of composite structures are sensitive to the choice of the material systems, the distribution of laminates on the structure, and the sizing at the laminate level. This sensitivity depends on many variables. To overcome the difficulties in attaining a global solution for the optimisation problem of composite structures, a new strategy is proposed based on the hybridisation of the memetic algorithm (MA) and the selfish gene (SG) algorithm. Instead of a local search, as performed in MAs, the selfish gene (SG) theory is applied, which follows a different learning scheme in which the conventional population of the individuals is replaced by a virtual population of alleles. The proposed approach, which is called the memetic-based selfish gene algorithm (MA + SG), is a mixed model that applies multiple learning procedures to explore the synergy of different cultural transmission rules in the evolutionary process. The principal aspects of the approach are as follows: co-evolution of multiple populations, species conservation, migration rules, self-adaptive multiple crossovers, local search in hybrid crossover with local genetic improvements, controlled mutation, individual age control, and feature-based allele statistical analysis. To discuss the capabilities of the proposed approach, numerical examples are represented to compare the results of MA + SG with those obtained using genetic algorithms (GA) and MA. The numerical results of the comparison tests showed that the GA and the MA maintained long periods without the evolution of the best-fitted individual/solutions. This behaviour during evolution is associated with the slow maturation of the elite group of populations in the GA and MA approaches. This behaviour is avoided when the MA + SG proposed approach is used with computational cost benefits.  相似文献   

11.
Heuristic search can be an effective multi-objective optimization tool; however, the required frequent function evaluations can exhaust computational sources. This paper explores using a hybrid approach with statistical interpolation methods to expand optimal solutions obtained by multiple criteria heuristic search. The goal is to significantly increase the number of Pareto optimal solutions while limiting computational effort. The interpolation approaches studied are kriging and general regression neural networks. This paper develops a hybrid methodology combining an interpolator with a heuristic, and examines performance on several non-linear bi-objective example problems. Computational experience shows this approach successfully expands and enriches the Pareto fronts of multi-objective optimization problems.  相似文献   

12.
Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinatorial optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation, neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig–Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples.  相似文献   

13.
求解混合流水线调度问题的离散人工蜂群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文给出了一种离散的人工蜂群算法(HDABC)用于求解混合流水车间调度(HFS)问题。采用工件排序的编码方式,并设计了四种邻域结构。雇佣蜂依次分派到解集中每个解,采用结合问题特征的局部搜索策略完成挖掘搜索工作。跟随蜂随机选择两个解并挑选较优者作为当前解,完成进一步的探优过程。侦察蜂采用三种策略跳出局部极小。通过34个同构并行机HFS问题和2个异构并行机HFS实际调度问题的实验,并与当前文献中的典型算法对比,验证了本文提出的算法无论在算法时间还是在求解质量上,都具备良好的性能。  相似文献   

14.
This paper discusses two different approaches to the solution of difficult Goal Programming (GP) models. An integer Goal Programming (IGP) solver and some genetically driven multi-objective methods are developed. Specialised GP speed up techniques and analysis tools are employed in the design and development of the solution systems. A selection of linear integer models of small to medium size with an internal structure that makes solution difficult are considered. These problems are solved by both methods in order to assess their computational performance over several criteria and to compare the differences between them. From the results obtained in this research, it is observed that genetic algorithms (GA) have performed in general less efficiently than the Integer Goal Programming system for the sample of problems analysed.  相似文献   

15.
Given the NP-Hard nature of many optimization problems, it is often impractical to obtain optimal solutions to large-scale problems in reasonable computing time. For this reason, heuristic and metaheuristic search approaches are used to obtain good solutions fast. However, these techniques often struggle to develop a good balance between local and global search. In this paper we propose a hybrid metaheuristic approach which we call the NeuroGenetic approach to search for good solutions for these large scale optimization problems by at least partially overcoming this challenge. The proposed NeuroGenetic approach combines the Augmented Neural Network (AugNN) and the Genetic Algorithm (GA) search approaches by interleaving the two. We chose these two approaches to hybridize, as they offer complementary advantages and disadvantages; GAs are very good at searching globally, while AugNNs are more proficient at searching locally. The proposed hybrid strategy capitalizes on the strong points of each approach while avoiding their shortcomings. In the paper we discuss the issues associated with the feasibility of hybridizing these two approaches and propose an interleaving algorithm. We also provide empirical evidence demonstrating the effectiveness of the proposed approach.  相似文献   

16.
This study addresses a class of single-machine scheduling problems involving a common due date where the objective is to minimize the total job earliness and tardiness penalties. A genetic algorithm (GA) approach and a simulated annealing (SA) approach utilizing a greedy local search and three well-known properties in the area of common due date scheduling are developed. The developed algorithms enable the starting time of the first job not at zero and were tested using a set of benchmark problems. From the viewpoints of solution quality and computational expenses, the proposed approaches are efficient and effective for problems involving different numbers of jobs, as well as different processing time, and earliness and tardiness penalties.  相似文献   

17.
In this paper we present two new heuristic approaches to solve the Discrete Ordered Median Problem (DOMP). Described heuristic methods, named HGA1 and HGA2 are based on a hybrid of genetic algorithms (GA) and a generalization of the well-known Fast Interchange heuristic (GFI). In order to investigate the effect of encoding on GA performance, two different encoding schemes are implemented: binary encoding in HGA1, and integer representation in HGA2. If binary encoding is used (HGA1), new genetic operators that keep the feasibility of individuals are proposed. Integer representation keeps the individuals feasible by default, so HGA2 uses slightly modified standard genetic operators. In both methods, caching GA technique was integrated with the GFI heuristic to improve computational performance. The algorithms are tested on standard ORLIB p-median instances with up to 900 nodes. The obtained results are also compared with the results of existing methods for solving DOMP in order to assess their merits.  相似文献   

18.
In this paper, solving a cell formation (CF) problem in dynamic condition is going to be discussed by using some traditional metaheuristic methods such as genetic algorithm (GA), simulated annealing (SA) and tabu search (TS). Most of previous researches were done under the static condition. Due to the fact that CF is a NP-hard problem, then solving the model using classical optimization methods needs a long computational time. In this research, a nonlinear integer model of CF is first given and then solved by GA, SA and TS. Then, the results are compared with the optimal solution and the efficiency of the proposed algorithms is discussed.  相似文献   

19.
We implemented five conversions of simulated annealing (SA) algorithm from sequential-to-parallel forms on high-performance computers and applied them to a set of standard function optimization problems in order to test their performances. According to the experimental results, we eventually found that the traditional approach to parallelizing simulated annealing, namely, parallelizing moves in sequential SA, difficultly handled very difficult problem instances. Divide-and-conquer decomposition strategy used in a search space sometimes might find the global optimum function value, but it frequently resulted in great time cost if the random search space was considerably expanded. The most effective way we found in identifying the global optimum solution is to introduce genetic algorithm (GA) and build a highly hybrid GA+SA algorithm. In this approach, GA has been applied to each cooling temperature stage. Additionally, the performance analyses of the best algorithm among the five implemented algorithms have been done on the IBM Beowulf PCs Cluster and some comparisons have been made with some recent global optimization algorithms in terms of the number of functional evaluations needed to obtain a global minimum, success rate and solution quality.  相似文献   

20.
The set covering problem (SCP) calls for a minimum cost family of subsets from n given subsets, which together covers the entire ground set. In this paper, we propose a local search algorithm for SCP, which has the following three characteristics. (1) The use of 3-flip neighborhood, which is the set of solutions obtainable from the current solution by exchanging at most three subsets. As the size of 3-flip neighborhood is O(n3), the neighborhood search becomes expensive if implemented naively. To overcome this, we propose an efficient implementation that reduces the number of candidates in the neighborhood without sacrificing the solution quality. (2) We allow the search to visit the infeasible region, and incorporate the strategic oscillation technique realized by adaptive control of penalty weights. (3) The size reduction of the problem by using the information from the Lagrangian relaxation is incorporated, which is indispensable for solving very large instances. According to computational comparisons on benchmark instances with other existing heuristic algorithms for SCP, our algorithm performs quite effectively for various types of problems, especially for very large-scale instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号