首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of methanol cosolvent on the synthesis of polypyrrole-silica colloidal nanocomposites using ultrafine silica sols in combination with both FeCl3 and APS oxidants has been investigated. Two protocols were evaluated: the addition of methanol to an aqueous silica sol and the addition of water to a methanolic silica sol. The latter protocol proved to be more robust, since it allowed colloidally stable dispersions to be prepared at higher methanol content (up to 50 vol% using the APS oxidant). This allowed greater control over the particle size of the nanocomposite particles. In general, the spectroscopic data, the particle size range, silica contents and electrical conductivities of these nanocomposites were similar to those reported earlier for purely aqueous formulations. Polypyrrole contents ranged from 49 to 71% by mass and particle diameters varied from around 160 to 360 nm. In terms of colloid stability, the APS oxidant was preferred for nanocomposite syntheses in the presence of methanol. However, the FeCl3 oxidant generally gave higher conductivities and narrower size distributions under comparable conditions. HF etching experiments combined with transmission electron microscopy studies indicated that, to a first approximation, these nanocomposite particles had core-shell morphologies, with a hydrophobic polypyrrole core and a hydrophilic silica shell that compose approximately one monolayer of silica sol particles. Finally, aqueous electrophoresis measurements suggested that the polypyrrole-silica nanocomposites were silica-rich and that the methanolic silica sol was more hydrophobic (lower surface charge density) than the aqueous silica sol.  相似文献   

2.
The surfactant-free synthesis of vinyl polymer-silica nanocomposite particles has been achieved in aqueous alcoholic media at ambient temperature in the absence of auxiliary comonomers. Styrene, methyl methacrylate, methyl acrylate, n-butyl acrylate, and 2-hydroxypropyl methacrylate were homopolymerized in turn in the presence of three commercially available ultrafine alcoholic silica sols. Stable colloidal dispersions with reasonably narrow size distributions were obtained, with silica contents of up to 58% by mass indicated by thermogravimetric analysis. Particle size distributions were assessed using both dynamic light scattering and disk centrifuge photosedimentometry. The former technique indicated that the particle size increased for the first 1-2 h at 25 degrees C and thereafter remained constant. Particle morphologies were studied using electron microscopy. Most of the colloidal nanocomposites comprised approximately spherical particles with relatively narrow size distributions, but in some cases more polydisperse or nonspherical particles were obtained. Selected acrylate-based nanocomposites were examined in terms of their film formation behavior. Scanning electron microscopy studies indicated relatively smooth films were obtained on drying at 20 degrees C, with complete loss of the original particle morphology. The optical clarity of solution-cast 10 microm nanocomposite films was assessed using visible absorption spectrophotometry, with 93-98% transmission being obtained from 400 to 800 nm; the effect of long-term immersion of such films in aqueous solutions was also examined. X-ray photoelectron spectroscopy studies indicated that the surface compositions of these nanocomposite particles are invariably silica-rich, which is consistent with their long-term colloidal stability and also with aqueous electrophoresis measurements. FT-IR studies suggested that in the case of the poly(methyl methacrylate)-silica nanocomposite particles, the carbonyl ester groups in the polymer are hydrogen-bonded to the surface silanol groups. According to differential scanning calorimetry studies, the glass transition temperatures of several poly(methyl methacrylate)-silica and polystyrene-silica nanocomposites can be either higher or lower than those of the corresponding homopolymers, depending on the nature of the silica sol.  相似文献   

3.
This study is focused on the formation of polymer/silica nanocomposite particles prepared by the surfactant-free aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) in the presence of 19 nm glycerol-functionalized aqueous silica nanoparticles using a cationic azo initiator at 60 °C. The TFEMA polymerization kinetics are monitored using 1H NMR spectroscopy, while postmortem TEM analysis confirms that the final nanocomposite particles possess a well-defined core–shell morphology. Time-resolved small-angle X-ray scattering (SAXS) is used in conjunction with a stirrable reaction cell to monitor the evolution of the nanocomposite particle diameter, mean silica shell thickness, mean number of silica nanoparticles within the shell, silica aggregation efficiency and packing density during the TFEMA polymerization. Nucleation occurs after 10–15 min and the nascent particles quickly become swollen with TFEMA monomer, which leads to a relatively fast rate of polymerization. Additional surface area is created as these initial particles grow and anionic silica nanoparticles adsorb at the particle surface to maintain a relatively high surface coverage and hence ensure colloidal stability. At high TFEMA conversion, a contiguous silica shell is formed and essentially no further adsorption of silica nanoparticles occurs. A population balance model is introduced into the SAXS model to account for the gradual incorporation of the silica nanoparticles within the nanocomposite particles. The final PTFEMA/silica nanocomposite particles are obtained at 96% TFEMA conversion after 140 min, have a volume-average diameter of 216 ± 9 nm and contain approximately 274 silica nanoparticles within their outer shells; a silica aggregation efficiency of 75% can be achieved for such formulations.

SAXS is used to study the formation of polymer/silica nanocomposite particles prepared by surfactant-free aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate in the presence of silica nanoparticles using a azo initiator at 60 °C.  相似文献   

4.
The internal nanomorphologies of two types of vinyl polymer-silica colloidal nanocomposites were assessed using electron spectroscopy imaging (ESI). This technique enables the spatial location and concentration of the ultrafine silica sol within the nanocomposite particles to be determined. The ESI data confirmed that the ultrafine silica sol was distributed uniformly throughout the poly(4-vinylpyridine)/silica nanocomposite particles, which is consistent with the "currant bun" morphology previously used to describe this system. In contrast, the polystyrene/silica particles had a pronounced "core-shell" morphology, with the silica sol forming a well-defined monolayer surrounding the nanocomposite cores. Thus these ESI results provide direct verification of the two types of nanocomposite morphologies that were previously only inferred on the basis of X-ray photoelectron spectroscopy and aqueous electrophoresis studies. Moreover, ESI also allows the unambiguous identification of a minor population of polystyrene/silica nanocomposite particles that are not encapsulated by silica shells. The existence of this second morphology was hitherto unsuspected, but it is understandable given the conditions employed to synthesize these nanocomposites. It appears that ESI is a powerful technique for the characterization of colloidal nanocomposite particles.  相似文献   

5.
Aqueous chemical oxidative dispersion polymerizations of pyrrole using PdCl2 oxidant were conducted using water-soluble polymeric colloidal stabilizers in order to synthesize polypyrrole–palladium (PPy–Pd) nanocomposite particles in one step. PPy–Pd nanocomposite particles with number average diameters of approximately 30 nm were successfully obtained as colloidally stable aqueous dispersions, which were stable at least for 7 months, using poly(4-lithium styrene sulfonic acid) colloidal stabilizer. The resulting nanocomposite particles were extensively characterized with respect to particle size, size distribution, colloidal stability, nanomorphology, surface/bulk chemical compositions, and conductivity. X-ray photoelectron spectroscopy indicated the existence of poly(styrene sulfonic acid) colloidal stabilizer on the surface of the nanocomposite particles. Transmission electron microscopy studies confirmed that nanometer-sized Pd nanoparticles were distributed in the PPy matrix.  相似文献   

6.
A simple approach to the synthesis of clay-silica nanocomposites is presented. Silica nanorings on the edges of clay sheets were synthesized by using a modified St?ber method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and fluorescence spectroscopy were employed to characterize the prepared nanocomposites. TEM results show that the average size of the nanorings increases with the growth of silica. XRD results indicate that the layered structures of clay can be found in the nanocomposite and the growth of silica nanorings expands the d spacing of clay platelets. The mechanism of the formation of the nanorings is discussed. The preparation of polystyrene (PS) brushes on the surfaces of silica nanorings by atom-transfer radical polymerization is also reported. The polymer nanocomposite with negatively charged clay surfaces and hydrophobic polymer brushes on the silica nanorings can be used in Pickering emulsions, and PS colloidal particles with clay-silica on the surfaces were prepared.  相似文献   

7.
The known grafting procedures of colloidal silica particles with poly(ethylene glycol) (PEG) lead to grafting layers that detach from the silica surface and dissolve in water within a few days. We present a new grafting procedure of PEG onto silica with a significant improvement of the stability of the grafting layers in aqueous solvents. Moreover, the procedure avoids any dry states or other circumstances leading to strong aggregation of the particles. To achieve the improved water stability, St?ber silica particles are first pre-coated with a silane coupling agent (3-aminopropyl)triethoxysilane (APS) to incorporate active amine groups. The water solubility of the pre-coating layer was minimized using a combination of APS with bis-(trimethoxysilylpropyl)amine (BTMOSPA) or bis-(triethoxysilyl)ethane (BTEOSE). These pre-coated particles were then reacted with N-succinimidyl ester of mono-methoxy poly(ethylene glycol) carboxylic acid to form PEG-grafted silica particles. The particles form stable dispersions in aqueous solutions as well as several organic solvents.  相似文献   

8.

Nanocomposite of magnetic Fe3O4 nanoparticles and polypyrrole was prepared under sonication by a new chemical polymerization method during which Fe3O4 nanoparticles acted both as a pyrrole oxidant and as a component in the composite material. Synthesis of this nanocomposite was carried out in aqueous solution acidified to pH 2, a prerequisite for the formation of these types of material and to facilitate pyrrole oxidation by Fe3O4 nanoparticles. In this way, two kind of materials were produced: Fe3O4/PPy nanocomposite in which magnetite nanoparticles were dispersed in PPy matrix and Fe3O4-aggregates@PPy nanocomposite that exhibits structure in which aggregates of magnetite nanoparticles are surrounded by a layer of polymeric phase. In the latter case, the polymerization process took place in the presence of a surfactant. These nanocomposites were characterized by electron microscopy techniques, IR spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermogravimetry. Particular attention was focused on the study of the electrochemical properties of the formed composites. The composite of Fe3O4 and PPy exhibits reversible electrochemical behaviour upon oxidation. The electrode process of the polymeric component oxidation in organic solvents such as acetonitrile and dichloromethane is very similar to the process in an aqueous solution.

  相似文献   

9.
 The effect of varying the oxidant, monomer and silica sol concentrations, silica sol diameter, polymerization temperature, stirring rate and oxidant type, on the particle size, polypyrrole content and conductivity of the resulting polypyrrole– silica colloidal nanocomposites has been studied. Surprisingly, nanocomposite formation appears to be relatively insensitive to most of the above synthesis parameters. One synthesis parameter which does have a significant and reproducible effect is the stirring rate: smaller, more monodisperse nanocomposite particles are obtained from rapidly stirred reaction solutions. However, this effect is only observed for the (NH4)2S2O8 oxidant. An alternative oxidant, H2O2/Fe3+, was found to give nanocomposites of similar particle size, polypyrrole content and conductivity to those obtained using the (NH4)2S2O8 oxidant. The colloid stability of these polypyrrole–silica nanocomposite particles depends on their silica content. The colloid stability of a silica-rich nanocomposite prepared using the (NH4)2S2O8 oxidant in the presence of electrolyte was comparable to that of a silica sol, whereas a polypyrrole-rich nanocomposite prepared using FeCl3 had markedly poorer colloid stability under these conditions. These observations are consistent with a charge stabilization mechanism for these nanocomposite particles. Received: 5 March 1998 Accepted: 27 April 1998  相似文献   

10.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

11.
Polypyrrole/iron oxide (PPy/γ-Fe2O3) nanocomposites were synthesized by in situ oxidative polymerization of pyrrole in the presence of surface modified γ-Fe2O3 in supercritical carbon dioxide (scCO2). The structural properties of nanocomposite particles thus obtained were characterized by FT-IR, thermal analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that ca. 50 nm γ-Fe2O3 nanoparticles were well dispersed in PPy powder in TEM pictures. X-ray photoelectron spectroscopy (XPS) analysis also support that all γ-Fe2O3 nanoparticles are encapsulated by PPy. Magnetic property of the nanocomposites was measured by SQUID, which indicated that the nanocomposites are superparamagnetic. The effects of different loadings of γ-Fe2O3 on the polymerization were also investigated.  相似文献   

12.
Various polypyrrole (PPy)-silica-methylcellulose nanocomposite particles were synthesized by suspension polymerization in the presence of silica nanoparticles controlling the ratio of pyrrole, silica, and methylcellulose during the polymerization. The electrorheological (ER) and dielectric properties of the sterically stabilized PPy-silica-methylcellulose nanocomposite suspensions were investigated. The ER response increases with the increase in the silica/pyrrole ratio. The ER behavior also depends on the methylcellulose amount during the polymerization. The yield stress initially increases with the methylcellulose amount, passes through a maximum, and then decreases with the methylcellulose amount. The dielectric constants and dc conductivities of the PPy-silica-methylcellulose nanocomposite particles and the dielectric properties of their suspensions indicate that the increased ER response arises from the enhanced interfacial and particle polarization which depends on the silica/pyrrole ratio and the methylcellulose amount during the polymerization.  相似文献   

13.
Fumed silica/bisphenol A dicyanate ester(BADCy)nanocomposites were prepared by introducing different contents of nano-sized fumed SiO2 into the BADCy matrix.Two different average primary particle diameters of 12 and 40 nm were chosen.Dibutyltindilaurate(DBTDL)catalyst was chosen to catalyze the cyanate ester group into triazine group via cyclotrimerization reaction.The SEM micrographs indicated that the fumed SiO2 particles were homogeneously dispersed in the poly(bisphenol A dicyanate)matrix by means of ultrasonic treatment and the addition of a coupling agent. The FTIR spectroscopy shows that,not only DBTDL catalyzes the polymerization reaction but also-OH groups of the SiO2 particles surface help the catalyst for the complete polymerization of BADCy monomer.The thermal stability of the cured BADCy can be improved by adequate addition of fumed SiO2.A slight increase in the dielectric constant and dielectric loss values were identified by testing the dielectric properties of the prepared nanocomposite samples.By increasing the SiO2 content,there was a slight increasing in the thermal conductivity values of the tested samples.The obtained results proved that the fumed silica/BADCy nanocomposites had good thermal and dielectrical properties and can be used in many applications such as in the thermal insulation field.  相似文献   

14.
Polystyrene/polypyrrole (PS/PPy) core–shell nanocomposite particles with uniform and tailored morphology have been successfully synthesized using the “naked” PS particulate substrate with the aid of a proposed strategy, the so-called swelling–diffusion–interfacial polymerization method. After initially forming pyrrole-swollen PS particles, diffusion of the monomer toward the aqueous phase was controlled through the addition of hydrochloric acid, eventually leading to its polymerization on the substrate particle surface. This process allows the nanocomposite particles to possess uniform and intact PPy overlayer and affords much more effective control over the structure and morphology of the resultant nanocomposites by simply changing the PS/pyrrole weight ratio or the addition amount of the doping acid. In particular, the nanocomposite particles with a thin, uniform, and intact PPy overlayer and their corresponding PPy hollow particles were obtained at a low addition amount of pyrrole. The resultant nanocomposite particles have been extensively characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetry.  相似文献   

15.
A new class of poly(vinyl acetate) (PVAc)/silica nanocomposite particles was successfully prepared in aqueous solution through a facile synthetic process. First, vinyl functionalized silica nanoparticles (VFSs) were synthesized using one-step method in aqueous emulsion, and then the vinyl groups located on the surface of VFSs were used to induced in situ polymerization of vinyl acetate. Scanning electron microscopy (SEM) images showed that VFSs and PVAc/silica nanocomposite particles all revealed highly monodispersed and uniform spheres. Especially, PVAc/silica nanocomposite particles obtained from transmission electron microscopy images presented an obvious core–shell structure, and the thickness of PVAc shell grafting on the surface of VFSs core was about 17 nm. In addition, the influence of the hydrolyzed and condensed time of vinyl triethoxysilane on the size and size distribution of VFSs was also investigated. The results of dynamic light scattering and SEM analysis indicated that the size and size distribution of VFSs decreased gradually with the extension of the reaction time from 6 to 48 h. Moreover, the structures and thermal properties of the samples were characterized via FT-IR and heat-flow DSC–TG.  相似文献   

16.
陈霞  翟翠萍 《化学研究》2014,(1):20-23,32
以氯金酸为前驱体,十二烷基硫醇和硼氢化钠分别作为稳定剂和还原剂,采用相转移法制备了单分散的金纳米粒子.将金纳米粒子通过乳液聚合的方法制备了纳米金/聚苯乙烯复合粒子.通过紫外-可见吸收光谱(UV-Vis)研究了纳米金和纳米金/聚苯乙烯复合粒子的光吸收特性,使用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)和动态光散射(DLS)对产物的组成、晶体结构、形貌、以及粒径进行了表征.结果表明,复合粒子为粒径分布较窄的球形,其中的金纳米粒子为面心立方结构.热失重分析(TGA)说明制备的纳米金/聚苯乙烯复合粒子具有很好的热稳定性.  相似文献   

17.
In this study, we report a new design to prepare polyimide-nanogold nanocomposites of high Au content and good thermal stability. The nanocomposites were prepared from the coupling agent (3-aminopropyltriethoxysilane, APS) capped poly(amic acid) (PAA-APS) and 3-mercaptopropyltrimethoxysilane (MPS) stabilized gold nanoparticles (MPS-Au). The Si-OR groups of MPS on the surface of MPS-Au provided further reaction with APS, hence the covalent bonds between PAA and MPS-Au were formed. PAA-Au was converted into PI-Au nanocomposite by a multiple-step baking. The results of particle-sized analysis show that the sizes of the synthesized MPS-Au from different MPS/Au mole ratios (2 and 0.5) are about 2 nm and 5 nm, respectively. FE-SEM images show that MPS-Au particles are dispersed well in the prepared nanocomposites and no large-scale aggregation occurs. TGA results indicate that the decomposition temperature of each nanocomposite prepared from its washed precursor is lower than that of APS-capped polyimide, but the temperature of maximum decomposed rate of each nanocomposite is higher than that of APS-capped polyimide. The results show the high thermal stability and application potentials of the prepared polyimide-nanogold nanocomposites.  相似文献   

18.
This article describes the synthesis of modified silica nanoparticles (SiO2-MPTMS) via the condensation reaction carried out between silanol moieties of silica nanoparticles and the trialkoxy silyl groups of (3-mercaptopropyl) trimethoxysilane (MPTMS). Then, SiO2-MPTMS nanoparticles in certain amounts (0.5 wt %, 1 wt %, 2.5 wt % and 5 wt %) were incorporated into thiol-ene resins consisting of bisphenol A glycerolate dimethacrylate and trimethylolpropane tris(3-mercaptopropionate) to prepare nanocomposite films via the photoinitiated thiol-ene polymerization in presence of 2,2-Dimethoxy-2-phenylacetophenone 99% as a photoinitiator. Fourier transform infrared spectroscopy, dynamic light scattering, scanning transmission electron microscopy, thermal gravimetric analyzer, and X-ray photoelectron spectrometer were employed to characterize SiO2-MPTMS nanoparticles. It was revealed that the nanosilica surface was successfully grafted by MPTMS with the grafting ratio of 22.9%. Properties of the nanocomposite films such as decomposition temperature, thermal glass transition temperature, tensile strength, hardness, and particle distribution were investigated and the results were compared with each other and neat film. The addition of MPTMS-modified silica particles did not improve the thermal stability of the films. In scanning electron microscopy study, it was seen that 2.5 wt % of these nanoparticles used as additives were about 200 nm in size and dispersed homogeneously in the polymer matrix. The increase in tensile strength of nanocomposite films compared to the neat film was measured as 77.3% maximum.  相似文献   

19.
Composites from ZnS:Mn nanoparticles and modified silicas are of interest for a broad range of potential applications in the form of films, structured particles, and self-assembled structures (e.g., colloidal crystals). They combine the versatility of silica sol gel chemistry with the wealth of functionalities available from doped nanoparticulate semiconductors (e.g., optical, electrical, and magnetic). In this work, ZnS:Mn nanoparticles have been prepared and modified in such a way that they can be incorporated seamlessly, either by inclusion or by covalent bonding into silicas. Functionalization was achieved through the use of silanes or thioles. Further processing by standard sol gel chemistry then either led directly to covalent conjugation with the silica network formed after condensation, or to isolated particles encapsulated in a silica shell. The results are heavily loaded (up to 30 wt%), transparent (including semiconductor particles that are smaller than 15 nm) and luminescent films, and massive bodies. In this work, the progress of nanocomposite formation was followed mainly by luminescence spectroscopy. Further work will have to address the electrical and magnetic properties of these nanocomposites as well.  相似文献   

20.

Nanocomposite latex particles, with a silica nanoparticle as core and crosslinked poly(tert‐butylmethacrylate) as shell, were prepared in this work. Silica nanoparticles were first synthesized by a sol‐gel process, and then modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) to graft C?C groups on their surfaces. The MPS‐modified silica nanoparticles were characterized by elemental analysis, FTIR, and 29Si NMR and 13C‐NMR spectroscopy; the results showed that the C?C groups were successfully grafted on the surface of the silica nanoparticles and the grafted substance was mostly the oligomer formed by the hydrolysis and condensation reaction of MPS. Silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were prepared via seed emulsion polymerization using the MPS‐modified silica nanoparticle as seed, tert‐butylmethacrylate as monomer and ethyleneglycol dimethacrylate as crosslinker. Their core/shell nanocomposite structure and chemical composition were characterized by means of TEM and FTIR, respectively, and the results indicated that silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号