首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A delayed epidemic model with non-monotonic incidence rate which describes the psychological effect of certain serious on the community when the number of infectives is getting larger is studied. The disease-free equilibrium is globally asymptotically stable when R0<1 and is globally attractive when R0=1 are derived. On the other hand, The disease is permanent when R0>1 is also obtained. Numerical simulation results are given to support the theoretical predictions.  相似文献   

2.
An SIRS epidemic model with pulse vaccination and non-monotonic incidence rate is introduced. Some sufficient conditions for the global attractivity of the infection-free periodic solution and permanence of this system are presented. Two numerical simulations are also given to illustrate our main results.  相似文献   

3.
In this paper, a discrete epidemic model with nonlinear incidence rate obtained by the forward Euler method is investigated. The conditions for existence of codimension-1 bifurcations (fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation) are derived by using the center manifold theorem and bifurcation theory. Furthermore, the condition for the occurrence of codimension-2 bifurcation (fold-flip bifurcation) is presented. In order to eliminate the chaos or Neimark-Sacker bifurcation of the discrete epidemic model, a tracking controller is designed. The number of the infectives tends to zero when the number of iterations is gradually increasing, that is, the disease disappears gradually. Finally, numerical simulations not only illustrate the validity of the proposed results, but also display the interesting and complex dynamical behaviors.  相似文献   

4.
5.
This paper is concerned with a SIR model with saturated and periodic incidence rate and saturated treatment function. By using differential inequality technique, we employ a novel argument to show that the disease‐free equilibrium is globally exponentially stable. The obtained results improve and supplement existing ones. We also use numerical simulations to demonstrate our theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the dynamics of an impulsive stochastic SIR epidemic model with saturated incidence rate are analyzed. The existence and uniqueness of the global positive solution is proved by constructing the equivalent system without pulses. The threshold which determines the extinction and persistence of the disease is obtained. The global attraction of disease-free periodic solution is addressed. Sufficient condition for the existence of a positive periodic solution is established. These results are supported by computer simulations.  相似文献   

7.
In this paper, we investigate a disease transmission model of SIRS type with latent period τ?0 and the specific nonmonotone incidence rate, namely, . For the basic reproduction number R0>1, applying monotone iterative techniques, we establish sufficient conditions for the global asymptotic stability of endemic equilibrium of system which become partial answers to the open problem in [Hai-Feng Huo, Zhan-Ping Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 459-468]. Moreover, combining both monotone iterative techniques and the Lyapunov functional techniques to an SIR model by perturbation, we derive another type of sufficient conditions for the global asymptotic stability of the endemic equilibrium.  相似文献   

8.
An epidemic model with standard incidence rate and saturated treatment function of infectious individuals is proposed to understand the effect of the capacity for treatment of infective individuals on the disease spread. The treatment function in this paper is a continuous and differential function which exhibits the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. It is proved that the existence and stability of the disease-free and endemic equilibria for the model are not only related to the basic reproduction number but also to the capacity for treatment of infective individuals. And a backward bifurcation is found when the capacity is not enough. By computing the first Lyapunov coefficient, we can determine the type of Hopf bifurcation, i.e., subcritical Hopf bifurcation or supercritical Hopf bifurcation. We also show that under some conditions the model undergoes Bogdanov-Takens bifurcation. Finally, numerical simulations are given to support some of the theoretical results.  相似文献   

9.
An epidemic model with a constant removal rate of infective individuals is proposed to understand the effect of limited resources for treatment of infectives on the disease spread. It is found that it is unnecessary to take such a large treatment capacity that endemic equilibria disappear to eradicate the disease. It is shown that the outcome of disease spread may depend on the position of the initial states for certain range of parameters. It is also shown that the model undergoes a sequence of bifurcations including saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation.  相似文献   

10.
11.
12.
带有非线性传染率的传染病模型   总被引:1,自引:0,他引:1  
对一类带有非线性传染率的SEIS传染病模型,找到了其基本再生数.借助动力系统极限理论,得到当基本再生数小于1时,无病平衡点是全局渐近稳定的,且疾病最终灭绝.当基本再生数大于1时,无病平衡点是不稳定的,而唯一的地方病平衡点是局部渐近稳定的.应用Fonda定理,得到当基本再生数大于1时疾病一致持续存在.  相似文献   

13.
An epidemic model with standard incidence rate and treatment rate of infectious individuals is proposed to understand the effect of the capacity for treatment of infectives on the disease spread. It is assumed that treatment rate is proportional to the numbers of infectives below the capacity and is a constant when the number of infectives is greater than the capacity. It is proved that the existence and stability of equilibria for the model is not only related to the basic reproduction number but also the capacity for treatment of infectives. It is found that a backward bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria if the capacity is low.  相似文献   

14.
Dynamical behavior of an epidemic model with a nonlinear incidence rate   总被引:2,自引:0,他引:2  
In this paper, we study the global dynamics of an epidemic model with vital dynamics and nonlinear incidence rate of saturated mass action. By carrying out global qualitative and bifurcation analyses, it is shown that either the number of infective individuals tends to zero as time evolves or there is a region such that the disease will be persistent if the initial position lies in the region and the disease will disappear if the initial position lies outside this region. When such a region exists, it is shown that the model undergoes a Bogdanov-Takens bifurcation, i.e., it exhibits a saddle-node bifurcation, Hopf bifurcations, and a homoclinic bifurcation. Existence of none, one or two limit cycles is also discussed.  相似文献   

15.
In this paper, we investigate the dynamics of a stochastic SIRS epidemic model with saturated incidence. When the noise is small, we obtain a threshold of the stochastic system which determines the extinction and persistence of the epidemic. Besides, we find that large noise will suppress the epidemic from prevailing.  相似文献   

16.
In this paper we study an SEIR epidemic model with saturated recovery rate. A backward bifurcation leading to bistability possibly occurs, and global dynamics are shown by compound matrices and geometric approaches. Numerical simulations are presented to illustrate the results.  相似文献   

17.
An SEIR epidemic model with a nonlinear incidence rate is studied. The incidence is assumed to be a convex function with respect to the infective class of a host population. A bifurcation analysis is performed and conditions ensuring that the system exhibits backward bifurcation are provided. The global dynamics is also studied, through a geometric approach to stability. Numerical simulations are presented to illustrate the results obtained analytically. This research is discussed in the framework of the recent literature on the subject.   相似文献   

18.
An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper.  相似文献   

19.
《Applicable analysis》2012,91(1):133-157
ABSTRACT

We study the traveling waves of reaction-diffusion equations for a diffusive SEIR model with a general nonlinear incidence. The existence of traveling waves is determined by the basic reproduction number of the corresponding ordinary differential equations and the minimal wave speed. Its proof is showed by introducing an auxiliary system, applying Schauder fixed point theorem and then a limiting argument. The non-existence proof is obtained by two-sided Laplace transform when the speed is less than the critical velocity. Finally, we present some examples to support our theoretical results.  相似文献   

20.
In this paper, an SVEIS epidemic model for an infectious disease that spreads in the host population through horizontal transmission is investigated. The role that temporary immunity (natural, disease induced, vaccination induced) plays in the spread of disease, is incorporated in the model. The total host population is bounded and the incidence term is of the Holling-type II form. It is shown that the model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. The global dynamics are completely determined by the basic reproduction number R0. If R0<1, the disease-free equilibrium is globally stable which leads to the eradication of disease from population. If R0>1, a unique endemic equilibrium exists and is globally stable in the feasible region under certain conditions. Further, the transcritical bifurcation at R0=1 is explored by projecting the flow onto the extended center manifold. We use the geometric approach for ordinary differential equations which is based on the use of higher-order generalization of Bendixson’s criterion. Further, we obtain the threshold vaccination coverage required to eradicate the disease. Finally, taking biologically relevant parametric values, numerical simulations are performed to illustrate and verify the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号