首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AlN epilayers are grown directly on sapphire (0001) substrates each of which has a low temperature AlN nucleation layer. The effects of pretreatments of sapphire snbstrates, including exposures to NH3/H2 and to H2 only ambients at different temperatures, before the growth of AlN epilayers is investigated. In-plane misoriented crystals occur in N-polar AlN epilayers each with pretreatment in a H2 only ambient, and are characterized by six 60°-apart peaks with splits in each peak in (1012) phi scan and two sets of hexagonal diffraction patterns taken along the [0001] zone axis in electron diffraction. These misoriented crystals can be eliminated in AlN epilayers by the pretreatment of sapphire substrates in the NH3/H2 ambient. AlN epilayers by the pretreatment of sapphire substrates in the NH3/H2 ambient are Al-polar. Our results show the pretreatments and the nucleation layers are responsible for the polarities of the AlN epilayers. We ascribe these results to the different strain relaxation mechanisms induced by the lattice mismatch of AlN and sapphire.  相似文献   

2.
Xiaotao Hu 《中国物理 B》2022,31(3):38103-038103
Gallium nitride (GaN) thin film of the nitrogen polarity (N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition (MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2° and 4° respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide (KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length. The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.  相似文献   

3.
采用直流电弧放电方法,在无催化剂的条件下直接氮化Al合成纤锌矿结构的AlN微晶棒。分别利用拉曼光谱仪(Raman)、扫描电子显微镜(SEM)和光致发光(PL)谱等测试手段对所制备样品进行表征和发光性能的研究。结果表明:所制备的Al N微晶棒长度约为30μm,直径约为10μm。在AlN微晶棒的PL谱中,有两个主要发光峰,中心在430 nm的发射源于VN和(V_(Al)-O_N)~(2-)构成的深施主-深受主对缺陷发光,中心在650 nm的发射源于VAl形成的深受主能级到价带的缺陷发光。在激发波长由270 nm逐渐增大到300 nm的过程中发现,Al N微晶棒波长在430 nm处的发光峰先增强后减弱,在激发波长为285 nm时强度最大;650 nm处的发光峰随激发波长增大而逐渐增强。  相似文献   

4.
氮化铝单晶薄膜的ECR PEMOCVD低温生长研究   总被引:10,自引:0,他引:10       下载免费PDF全文
秦福文  顾彪  徐茵  杨大智 《物理学报》2003,52(5):1240-1244
采用电子回旋共振等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)技术,在c轴取向的蓝宝石即α Al2O3(0001)衬底上,以氮化镓(GaN)缓冲层和外延层作为初始层,分别以高纯氮气(N2)和三甲基铝(TMAl)为氮源和铝源低温生长氮化铝(AlN)薄膜.并利用反射高能电子衍射(RHEED)、原子力显微镜(AFM)和x射线衍射(XRD)等测量结果,研究了氢等离子体清洗、氮化和GaN初始层对六方AlN外延层质量的影响,从而获得解理性与α Al2O3衬底一致的六方相AlN单晶薄膜,其XRD半高宽为1 关键词: AlN 氢等离子体清洗 氮化 GaN  相似文献   

5.
The features and results of X-ray diffraction analysis of GaN films are presented. The films are grown by metalorganic vapor-phase epitaxy on c-plane sapphire substrates using GaN or AlN nucleation layers deposited at a low temperature. Measurements of the twist angle and concentrations of Al x Ga1-x N solid solutions are discussed in detail.  相似文献   

6.
薛军帅  郝跃  张进成  倪金玉 《中国物理 B》2010,19(5):57203-057203
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Raman measurements demonstrate that there exist more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423~eV to 3.438~eV and the frequency of Raman shift of $E_{2 }$(TO) moves from 571.3~cm$^{ - 1}$ to 572.9~cm$^{ - 1}$ when the temperature of AlN interlayers increases from 700~$^{\circ}$C to 1050~$^{\circ}$C. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.  相似文献   

7.
High‐quality AlN epilayers were grown via pulsed sputtering deposition on thermally nitrided sapphire $(11\bar 20)$ with precise control of the N/Al ratio. Under slightly Al‐rich growth conditions, the growth of AlN epilayers on the thermally nitrided sapphire proceeded in a two‐dimensional mode from the initial stage of growth, and their surfaces were atomically flat stepped and terraced structures. The FWHM values of the X‐ray rocking curves were as low as 87 arcsec and 339 arcsec for the 0002 and $1 \bar 102$ diffractions, respectively, at a film thickness of 400 nm. The present approach is therefore quite promising for the low‐cost fabrication of AlGaN‐based UV optical devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The effect of an initially grown high-temperature AlN buffer (HT-AlN) layer's thickness on the quality of an AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-step growth process is investigated. The characteristics of AlN epilayers are analyzed by using triple-axis crystal X-ray diffraction (XRD) and atomic force microscopy (AFM). It is shown that the crystal quality of the AlN epilayer is closely related to its correlation length. The correlation length is determined by the thickness of the initially grown HT-AlN buffer layer. We find that the optimal HT-AlN buffer thickness for obtaining a high-quality AlN epilayer grown on sapphire substrate is about 20 nm.  相似文献   

9.
First-principles calculations are performed to study the electronic structures and magnetic properties of C-doped AlN. Both generalized gradient approximation (GGA) and GGA+U calculations show that a substitutional C atom introduces magnetic moment of about 1.0 μB, which comes from the partially occupied 2p orbitals of the C, its first neighboring Al and first neighboring N atoms (GGA) or out-of-plane first and fifth neighboring N atoms (GGA+U), among which the atomic moment of the C is the biggest. The U correction for the anion-2p states obviously changes the magnetic moment distribution of Al and N atoms and transforms the ground state of C-doped AlN to insulating from half-metallic. The C atoms can induce ferromagnetic ground state with long-range couplings between the moments in C-doped AlN. The ferromagnetic coupling can be explained in terms of the two band coupling model.  相似文献   

10.
芦伟  徐明  魏屹  何林 《物理学报》2011,60(8):87807-087807
利用Krönig-Penney 模型和形变势理论,从理论上探讨了纤锌矿型AlN/InN和AlN/GaN超晶格系统的能带结构及不同应变模式对能带结构的影响,计算得到了能带结构随各亚层参量变化的一般性规律、超晶格的能量色散关系、应变造成的影响以及不同亚层厚度的系统禁带宽度和导带第一子禁带宽度.研究发现,通过改变亚层厚度可以从不同形式设计能带结构,应变会改变系统禁带宽度,使带阶和子能带明显窄化,价带结构趋于复杂甚至生成准能带结构.与实验结果对比后发现,该模型适于模拟窄势阱结构超晶格,而对于宽势阱则必须 关键词: AlN/InN和AlN/GaN超晶格 Krönig-Penney模型 应变 子能带  相似文献   

11.
In this paper, c-axis oriented AlN films were prepared on sapphire substrate by RF reactive magnetron sputtering at various deposition temperatures (30–700 °C). The influences of deposition temperature on the chemical composition, crystalline structure and surface morphology of the AlN films were systematically investigated. The as-deposited films were characterized by X-ray photoelectron spectroscopy (XPS), two-dimensional X-ray diffraction (2D-XRD) and atomic force microscopy (AFM). The experimental results show that it can be successfully grown for high-purity and near-stoichiometric (Al/N = 1.12:1) AlN films except for the segregation of a few oxygen impurities exist in the form of Al–O bonding. The chemical composition of as-deposited films is almost independent of substrate temperature in the range of 30–700 °C. However, the crystalline structure and surface morphology of the deposited AlN films are strongly influenced by the deposition temperature. The optimum deposition temperature is 300 °C, giving a good compromise between crystalline structure and surface morphology to grow AlN films.  相似文献   

12.
The stability and electronic structures of AlN nanowires with and without N-vacancy are investigated using firstprinciples calculations.We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires.After calculating the formation energies of N-vacancy at different sites in AlN nanowires with different diameters,we find that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate them under Al-rich conditions.Through studying the electronic properties of AlN nanowires with N-vacancies,we further find that there are two isolated bands in the deep part of the band gap,one of them is fully occupied and the other is half occupied.The charge density indicates that the half-fully occupied band arises from the Al at the surface,and this atom becomes an active centre.  相似文献   

13.
We report on the polarity control of ZnO grown by plasma assisted molecular beam epitaxy on Ga polar (0001) GaN/sapphire templates simply via the oxygen‐to‐Zn (VI/II) ratio during the growth of a thin nucleation layer at 300 °C. Following Zn pre‐exposure, the ZnO layers nucleated with low VI/II ratios (<1.5) exhibited Zn‐polarity. Those nucleated with VI/II ratios above 1.5, exhibited O‐polarity. Supported by scanning transmission electron microscopic imaging, we have unequivocally demonstrated that polarity inversion takes place without formation of any vertical inversion domains and within one monolayer of presumably non‐stoichiometric GaOx formed at the ZnO/GaN interface. A direct correlation between polarity and strain sign of ZnO layers has been found. The Zn‐polar ZnO layers were under tensile biaxial strain, whereas the O‐polar material exhibited compressive strain. Moreover, the amount of residual strain varied linearly with VI/II ratio used during the low‐temperature nucleation layer growth. Strain control with VI/II ratio has been explained by the potential formation of Zn interstitials.  相似文献   

14.
Under the generalized gradient approximation (GGA), the stabilities and electronic properties of semiconductor AlN nanostructures have been investigated by using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. The single-walled faceted AlNNTs present an obvious structural modification. The larger the diameter, the more stable the nanowire, and the wires without internal surfaces are more stable than the multiwalled tubes or the SWNT. Therefore, the large-size nanowires are easier to be synthesized than the corresponding multiwalled tubes or single-walled nanotube in experiment. The dangling bonds of surface atoms cause the “localized edge-induced states”. These two nanostructures C and F are still wide band gap semiconductors accompanied by a few surface states located in the band gap of bulk AlN and thus extremely suitable for application in flexible pulse wave sensors, nanomechanical resonators and light-emitting diodes.  相似文献   

15.
采用基于密度泛函理论(DFT)的平面波超软赝势法,研究了Cu、Ag、Au掺杂AlN的晶格常数、磁矩、能带结构和态密度。电子结构表明,Cu、Ag、Au的掺杂使在带隙中引入了由杂质原子的d态与近邻N原子的2p态杂化而成的杂质带,都为p型掺杂,增强了体系的导电性。Cu掺杂AlN具有半金属铁磁性,半金属能隙为0.442eV,理论上可实现100%的自旋载流子注入;Ag掺杂AlN具有很弱的半金属铁磁性;而Au掺杂AlN不具有半金属铁磁性。因此,与Ag、Au相比,Cu更适合用来制作AlN基稀磁半导体。  相似文献   

16.
蓝雷雷  胡新宇  顾广瑞  姜丽娜  吴宝嘉 《物理学报》2013,62(21):217504-217504
采用直流磁控共溅射技术, 以Ar与N2为源气体, 硅片为衬底成功地制备了Fe, Mn掺杂AlN薄膜. 利用X射线衍射和拉曼光谱研究了工作电流、靶基距离等工艺参数的改变对薄膜结构的影响. 利用扫描电子显微镜和能谱分析仪对薄膜的表面形貌和组成成分进行了分析. 利用振动样品磁强计在室温下对Fe, Mn掺杂AlN薄膜进行了磁性表征. Mn掺杂AlN薄膜表现出顺磁性的原因可能是由于Mn掺杂浓度较高, 在沉积过程部分Mn以团簇的形式存在, 反铁磁性的Mn团簇减弱了体系的铁磁交换作用. Fe掺杂AlN薄膜表现出室温铁磁性, 这可能是AlFeN三元化合物作用的结果. 随着Fe 掺杂AlN薄膜中Fe原子浓度从6.81%增加到16.17%, 其饱和磁化强度Ms由0.27 emu·cm-3逐渐下降到0.20 emu·cm-3, 而矫顽力Hc则由57 Oe增大到115 Oe (1 Oe=79.5775 A/m), 这一现象与Fe离子间距离的缩短及反铁磁耦合作用增强有关. 关键词: 直流磁控共溅射 氮化铝薄膜 结构 磁性  相似文献   

17.
氮化铝陶瓷具有优良的绝缘和导热性能,是传导冷却超导电力装置绝缘与导热连接件的首选,激光切割是对其进行加工的最有效方法,但激光切割可能对其绝缘性能产生影响,进而影响超导电力装置的安全运行。基于此,通过对激光打孔前后氮化铝基片孔周区域绝缘电阻的测量、金相结构和扫描电镜成分的比较,分析了激光打孔对氮化铝绝缘性能的影响,并总结了选用氮化铝基片作为超导电力装置电流引线的绝缘与导热垫片应注意的问题。  相似文献   

18.
蓝宝石基片的处理方法对ZnO薄膜生长行为的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用反应射频磁控溅射方法,在经过不同方法处理的蓝宝石基片上,在同一条件下沉积了ZnO薄膜.利用原子力显微镜、X射线衍射、反射式高能电子衍射等分析技术,对基片和薄膜的结构、表面形貌进行了系统表征.研究结果显示,不同退火条件下的蓝宝石基片表面结构之间没有本质的差异,均为α-Al2O3 (001)晶面,但基片表面形貌的变化较大.在不同方法处理的蓝宝石基片上生长的ZnO薄膜均具有高c轴取向的织构特征,但薄膜的表面形貌差异较大.基片经真空退火处 关键词: ZnO薄膜 反应磁控溅射 基片处理 形貌分析  相似文献   

19.
Nanometer scale Al/AlN multilayers have been prepared by dc magnetron sputtering technique with a columnar target. A set of Al/AlN multilayers with the Al layer thickness of 2.9 nm and the AlN layer thickness variation from 1.13 to 6.81 nm were determined. Low angle X-ray diffraction (LAXRD) was used to analyze the layered structure of multilayers. The phase structure of the coatings was investigated with grazing angle XRD (GAXRD). Mechanical properties of these multilayers were thoroughly studied using a nanoindentation and ball-on-disk micro-tribometer. It was found that the multilayer hardness and reduced modulus showed no strong dependence on the AlN layer thickness. Al2.9 nm/AlN1.13 nm multilayer had more excellent tribological properties than single layers and other proportion multilayers with a lowest friction coefficient of 0.15. And the tribological properties of all the multilayers are superior to the AlN single layer.  相似文献   

20.
王维颖  金鹏  刘贵鹏  李维  刘斌  刘兴昉  王占国 《中国物理 B》2014,23(8):87810-087810
The effect of high-temperature annealing on AlN thin film grown by metalorganic chemical vapor deposition was investigated using atomic force microscopy, Raman spectroscopy, and deep ultra-violet photoluminescence(PL) with the excitation wavelength as short as ~ 177 nm. Annealing experiments were carried out in either N2 or vacuum atmosphere with the annealing temperature ranging from 1200℃ to 1600℃. It is found that surface roughness reduced and compressive strain increased with the annealing temperature increasing in both annealing atmospheres. As to optical properties,a band-edge emission peak at 6.036 eV and a very broad emission band peaking at about 4.7 eV were observed in the photoluminescence spectrum of the as-grown sample. After annealing, the intensity of the band-edge emission peak varied with the annealing temperature and atmosphere. It is also found that a much stronger emission band ranging from 2.5 eV to 4.2 eV is superimposed on the original spectra by annealing in either N2 or vacuum atmosphere. We attribute these deep-level emission peaks to the VAL–ONcomplex in the AlN material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号