首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He^+D2^+ has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j′, P(Or), the distribution of the dihedral angle P(Фr), and the angular distribution of product rotational vectors in the form of polar plots in θr and Фr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD^+ presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.  相似文献   

2.
岳现房 《中国物理 B》2012,21(7):73401-073401
Stereodynamics for the reaction H+LiF(v=0, j=0) → HF+Li and its isotopic variants on the ground-state (1 2 A′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P (θr), P (φr), and P (θr ,φr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS 00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.  相似文献   

3.
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.  相似文献   

4.
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction.  相似文献   

5.
李永庆  杨云帆  于洋  张永嘉  马凤才 《中国物理 B》2016,25(2):23401-023401
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a~1?) →H_2(X~1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k–k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k–k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.  相似文献   

6.
The vector correlations in the reaction F+H2 (v =0-3, j =0-3)→ HF(v', j')+H are investigated using the quasi- classical trajectory method on the Stark-Werner potential energy surface at a collision energy of 1.0eV. The potential distribution P(θr) to angles between k and j', the distribution P(Фr) to dihedral angles, denoting k - k' - j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization.  相似文献   

7.
Quasi-classical trajectory theory is used to study the reaction of O(3p) with H2 (D2) based on the ground 3A″ potential energy surface (PES). The reaction cross section of the reaction O+H2→+OH+H is in excellent agreement with the previous result. Vector correlations, product rotational alignment parameters (P2(j′. k)) and several polarizeddependent differential cross sections are further calculated for the reaction. The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES, arising from various collision energies or mass factors.  相似文献   

8.
To investigate the effect of a reagent’s rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3 A and 3 A potential energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product’ rotational momentum are discussed at one fixed collision energy. Effects of reagents’ rotational excitation on the reaction do exist regularly.  相似文献   

9.
The stereodynamics of the reaction of Ca + HCl are calculated at three different collision energies based on the potential energy surface [Verbockhaven G et al. 2005 J. Chem. Phys. 122 204307] using quasi-classical trajectory theory. The polarization-dependent differential cross sections (PDDCSs) (2π/σ )(dσ 00 /dω t ), (2π/σ )(dσ 20 /dωt ), (2π/σ )(dσ 22+ /dωt ), (2π/σ )(dσ 21 /dω t ) and the distributions of P(θ r ), P(φr ), and P(θr ,φr ) are calculated. The results indicate that the rotational polarization of the CaCl product presents different characteristics for the different collision energies, and the effects of the collision energy on the vector potential, including the alignment, orientation, and PDDCSs, are not obvious.  相似文献   

10.
The quasi-classical trajectory(QCT) method is employed to calculate the stereodynamics of the abstraction reactions H/D+HS/DS based on an accurate potential energy surface [L S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.136 094308].The reaction cross sections of the title reaction are computed,and the vector correlations for different collision energies and different initial vibrational states are presented.The influences of the collision energy and reagent vibration on the product polarization are studied,and the product polarizations of the title reactions are found to be distinctly different,which arises from the different mass factors,collision energies,and reagent vibrational states.  相似文献   

11.
In this paper, the stereodynamics of Li + DF → Li F + D reaction is investigated by the quasi-classical trajectory(QCT)method on the ^2A' potential energy surface(PES) at a relatively low collision energy of 8.76 kcal/mol. The scalar properties of the title reaction such as reaction probability and cross section are studied with vibrational quantum number of v = 1–6. The product angular distributions P(θr) and P(φr) are presented in the same vibrational level range. Moreover, two polarization-dependent generalized differential cross sections(PDDCSs), i.e., the PDDCS00 and PDDCS22+are calculated as well. These stereodynamical results demonstrate sensitive behaviors to the vibrational quantum numbers.  相似文献   

12.
Quasi-classical trajectory theory is used to study the isotope effect of oxygen atoms on the vector correlations in the O(^3P) + D reaction at a collision energy of 25kcal/mol using accurate potential energy surface of the 3A' triplet state. The distributions of p(θr) and the distribution of dihedral angel p(φr) as well as p(θr,φr) are calculated. Moreover, four polarization-dependent generalized differential cross sections (PDDCSs) of product are presented in the center-of-mass frame. The results indicate that the polarization of the product presents different characters for the isotope effect of oxygen atoms. Isotopic substitute can cause obviously different effects on the four PDDCSs.  相似文献   

13.
The effects of isotopic variants on stereodynamic properties for the title reactions have been investigated using a quasi-classical trajectory method based on the first excited state NH2(I^2A') potential energy surface [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644]. The forward–backward symmetry scattering of the differential cross section can be observed, which demonstrates that all these reactions follow the insertion mechanism. Three angle distribution functions P(θr), P(φr), and P(θr, φr) with different collision energies and target molecules H2/D2/T2 are calculated. It is shown that the product rotational angular momentum is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The title reaction is mainly governed by the "in-plane" mechanism through the calculated distribution function P(θr, φr). The observable influences on the rotational polarization of the product by the isotopic substitution of H/D/T can be demonstrated.  相似文献   

14.
This paper investigates the stereodynamics of the reaction He+HD+ by the quasi-classical trajectory(QCT) method using the most accurate AQUILANTI surface [Aquilanti et al 2000 Mol.Phys.98 1835].The distribution P(φr) of dihedral angle and the distribution P(θr) of angle between k and j have been presented at three different collision energies.Four generalized polarization-dependent differential cross-sections(2π/σ)(dσ00/dωt),(2π/σ)(dσ20/dωt),(2π/σ)(dσ22+/dωt),(2π/σ)(dσ21 /dωt) are also calculated.Some interesting results are obtained from the comparison of the stereodynamics of the title reaction at different collision energies.  相似文献   

15.
A new London-Eyring-Polanyi-Sato potential energy surface is employed in this work to study the stereo properties of the O(3P)+CH4 →H+CH3O reaction in its rovibrationally ground state using the quasiclassical trajectory method(QCT).Our calculations are performed at a range of collision energies,Ec=1.5eV~3.5eV,and the excitation function obtained by the QCT method accords well with the experimental data.The product rotational polarization is calculated,and the product shows a strong rotational polarization in the centre-of-mass coordinate system.The orientation of the product rotational angular momenta is sensitive to the increase in collision energy,and the alignment of the product rotational angular momenta shows some of the properties of the heavy heavy-light mass combination reactions.In the isotopic substituted reaction study,when the H atoms in methane are replaced by D atoms,the rotational polarization is obviously reduced.The polarization-dependent differential cross section is also studied by this QCT calculation to provide detailed information about the rotational alignment and orientation of the product.  相似文献   

16.
尹淑慧  邹静涵  郭明星  李磊  许雪松  高宏  车丽 《中国物理 B》2013,22(2):28201-028201
The stereodynamics of the abstraction reaction H + NeH+(v = 1-3,j = 1,3,5) → H2+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.132 014303].The effects of vibrational and rotational excitation of reagent molecules on the polarization of the product are investigated.The reaction cross sections,the distributions of P(θr),P(φr),and polarizationdependent differential cross sections(PDDCSs) are calculated.The obtained cross sections indicate that the title reaction is a typical barrierless atom(ion)-ion(molecule) reaction.The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of the title reaction,and the possible reasons for the differences are presented.  相似文献   

17.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

18.
Quasi-classical trajectory theory is used to study the reaction of O(3 P) with H 2 (D 2) based on the ground 3 A″ potential energy surface (PES).The reaction cross section of the reaction O+H 2 →OH+H is in excellent agreement with the previous result.Vector correlations,product rotational alignment parameters P 2 (j · k) and several polarizeddependent differential cross sections are further calculated for the reaction.The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES,arising from various collision energies or mass factors.  相似文献   

19.
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory(QCT) method on the 11A potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(θr),P(φr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.  相似文献   

20.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory (QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j’ of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号