首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A superconducting magnet prototype for Accelerator Driven Sub-critical System Injection-Ⅰ had been designed and fabricated, and tested in a new made vertical Dewar in November 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting wire, etc. The first one of the batch magnets was tested in the vertical Dewar at the Harbin Institute of Technologyin in September 2013. A field measurement was carried out at the same time by the measurement platform that was seated on the top of the vertical Dewar,the measurement results met the design requirements. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.  相似文献   

2.
In an ADS injector Ⅰ, there are five superconducting magnets in each cryomodule. Each superconducting magnet contains a solenoid magnet, a horizontal dipole corrector (HDC), and a vertical dipole corrector (VDC). Six current leads will be required to power the electrical circuits, from room temperature to the 2.1 K liquid helium bath: two leads carry 100 A current for the solenoid magnet while the other four carry 12 A for the HDC and the VDC. This paper presents the principle of current lead optimization, which includes the cooling methods, the choice of material and structure, and the issues for current lead integration.  相似文献   

3.
To test superconducting cavities, a vertical test system has been designed and set up at the Institute of Modern Physics (IMP). The system design is based on VCO-PLL hardware and the NI Labview software. The test of the HWR010#2 superconducting cavity shows that the function of this test system is satisfactory for testing the low frequency cavity.  相似文献   

4.
In the upgrade project of the Beijing Electron Positron Collider (BEPCⅡ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a total capacity of 0.5~kW at 4.5~K was built at the Institute of High Energy Physics (IHEP) to support the operations of these superconducting devices. For preparing the commissioning of the system, the refrigeration process was simulated and analyzed numerically. The numerical model was based on the latest engineering progress and focused on the normal operation mode. The pressure and temperature profiles of the cryogenic system are achieved with the simulation. The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.  相似文献   

5.
The BEPCII storage ring adopts two 500 MHz superconducting cavities (SCC). Each one is equipped with a 500 MHz input power coupler. The coupler is to feed 150 kW power in continuous wave (CW) mode with both standing and traveling wave modes. Due to high power feeding and high frequency of the coupler, its fabrication is a big challenge. The fabrication started with two key components,the window and the antenna. Up to now, two sets including windows and antennas have been made by IHEP. And a 270 kW RF power in CW has passed through the coupler during the high power test. The fabrication details are presented in this paper.  相似文献   

6.
The high-current superconducting proton linac is being studied for the accelerator-driven system (ADS) project undertaken by the Chinese Academy of Sciences. The injector Ⅱ will be operated at 162.5 MHz, and the proton out from the RFQ with an energy of 2.5 MeV will be accelerated to 10 MeV by two cryo-modules, which are composed of eight superconducting half wave resonance cavities and nine solenoids. In this paper, the design and beam simulation of the superconducting section of the injector Ⅱ, the acceptance calculation and a stability analysis are presented.  相似文献   

7.
A low loss- (LL) type 500 MHz 5-cell superconducting niobium prototype cavity with a large beam aperture has been developed successfully including the optimization, the deep drawing and electron beam welding, the surface treatment and the vertical testing. The performance of the fundamental mode was optimized and the higher order modes were damped by adopting an enlarged beam pipe for propagation. Surface preparation or treatment including mechanical polishing, buffered chemical polishing and high pressure rinsing with ultra-pure water and so on was carried out carefully to ensure a perfect inner surface condition. The vertical testing results show that the accelerating voltage higher than 7.5 MV was obtained while the quality factor was better than 1× 109 at 4.2 K. No obvious multipacting or field emission was found during the test. However, a quench happened while increasing the field a little higher than 7.5 MV that at present limited the cavity performance.  相似文献   

8.
The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector Ⅱ as one of the parallel injectors of China-ADS, and is prompted by the Institute of Modern Physics (IMP). In this paper, a new scheme with full period lattice structure for the SC section is proposed. In the new scheme, there are sixteen periods, with one superconducting solenoid and one superconducting cavity included in each period. All of the elements are contained in four eryomodules. The dreadful influence of the mismatch caused by period structural change can be avoided, and the beam quality is favorable. In addition, this new scheme has certain advantages in reducing the project's difficulty and construction risk. The details of the design and beam dynamic simulation for the full period lattice structure are given in this paper.  相似文献   

9.
The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector Ⅱ as one of the parallel injectors of China-ADS, and is prompted by the Institute of Modern Physics (IMP). In this paper, a new scheme with full period lattice structure for the SC section is proposed. In the new scheme, there are sixteen periods, with one superconducting solenoid and one superconducting cavity included in each period. All of the elements are contained in four cryomodules. The dreadful influence of the mismatch caused by period structural change can be avoided, and the beam quality is favorable. In addition, this new scheme has certain advantages in reducing the project's difficulty and construction risk. The details of the design and beam dynamic simulation for the full period lattice structure are given in this paper.  相似文献   

10.
Twelve very low Beta superconducting single spoke cavities, whose Beta is only 0.12 (Spoke012) when operating at 325 MHz, are adopted in Injector I for China-ADS linac. This type of spoke cavity is believed to be one of the key challenges for its very low geometric Beta. So far, in collaboration with Peking University and Harbin Institute of Technology, IHEP has successfully designed, fabricated, and tested the Spoke012 prototype cavity. This paper presents the details of the design, fabrication and test results for Spoke012 prototype cavity.  相似文献   

11.
俎栋林  郭华  宋枭禹  包尚联 《中国物理》2002,11(10):1008-1012
The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4×6 layers of superconducting wires is designed. The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/B0 in the single-solenoid magnet is 30% lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.  相似文献   

12.
We investigate the effect of the optimized aging processing on magnetism and mechanical property of the sintered Dydoped Nd–Fe–B permanent magnet. The experimental results show that the magnetism, especially intrinsic coercivity, of the optimized aged Dy-doped Nd–Fe–B magnet is more excellent than that of the sintered one, but the former's strength and hardness are lower than that of the latter. It was observed that the optimized aged Dy-doped Nd–Fe–B magnet have more uniform grain size, thinner(Nd, Dy)-rich boundary phase. By means of the EBSD technology, the number of larger angle grain boundaries in the optimized aged Dy-doped Nd–Fe–B magnet is more than that of the sintered one. The reasons for the increased intrinsic coercivity and decreased mechanical properties of the optimized aged Dy-doped Nd–Fe–B magnet are also discussed.  相似文献   

13.
The injector Scheme-(or Injector-) of the C-ADS linac is a 10 mA 10 MeV proton linac working in CW mode. It is mainly comprised of a 3.2 MeV room-temperature 4-vane RFQ and twelve superconducting single-spoke cavities housed in a long cryostat. Error analysis including alignment and field errors, and static and dynamic ones for the injector are presented. Based on detailed numerical simulations, an orbit correction scheme has been designed, which shows that with correction the rms residual orbit errors can be controlled within 0.3 mm and a beam loss rate of 1.7×10-6is obtained. To reduce the beam loss rate further, an improved lattice design for the superconducting spoke cavity section has been studied.  相似文献   

14.
For the application of high intensity continuous wave(CW) proton beam acceleration, a new superconducting accelerating structure for extremely low β protons working in TE210 mode has been proposed at Peking University. The cavity consists of eight electrodes and eight accelerating gaps. The cavity's longitudinal length is368.5 mm, and its transverse dimension is 416 mm. The RF frequency is 162.5 MHz, and the designed proton input energy is 200 ke V. A peak field optimization has been performed for the lower surface field. The accelerating gaps are adjusted by phase sweeping based on KONUS beam dynamics. The first four gaps are operated at negative synchronous RF phase to provide longitudinal focusing. The subsequent gaps are 0?sections which can minimize the transverse defocusing effect. Solenoids are placed outside the cavity to provide transverse focusing. Numerical calculation shows that the transverse defocusing of the KONUS phase is about three times smaller than that of the conventional negative synchronous RF phase. The beam dynamics of a 10 m A CW proton beam is simulated by the Trace Win code. The simulation results show that the beam's transverse size is under effective control, while the increase in the longitudinal direction is slightly large. Both the Trace Win simulation and the numerical calculation show that the cavity has a relatively high effective accelerating gradient of 2.6 MV/m. On the whole, our results show that this new accelerating structure may be a possible candidate for superconducting operation at such a low energy range.  相似文献   

15.
High power conditioning of the input coupler for BEPCII superconducting cavity has been performed. After room temperature conditioning, the RF power of 150 kW with continuous wave at standing wave mode passed through the coupler without any problem. Meanwhile, a series of methods have also been studied to improve the performance of the coupler during the beam operation. Up to now, the input coupler can feed a RF power up to 100 kW stably with high current of 250 mA at 2.5 GeV.  相似文献   

16.
The rocking curve of Tl-2212 thin films in Fig.2 of our original paper[1]should be replaced with the following new one.Accordingly,in the fifth paragraph of Section 3 of the original paper,the statement“The full width at half maximum(FWHM)of the(0012)peak of the Tl-2212 phase is about 0.24°”should be“The full width at half maximum(FWHM)of the(0012)peak of the Tl-2212 phase is about 0.42°”.  相似文献   

17.
We collected 343 groups of abdominal electrocardiogram (ECG) data from 78 pregnant women and deleted the chan- nels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between dif- ferent abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT-BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT-BIH PhysioBank, achieving the successful separation of the maternal ECGs.  相似文献   

18.
ParameterOptimizingExperimentforLaserShock┐procesingonAnti┐fatigueand┐FracturePropertyofMetalCAILanYANGJichangRENNaifei(Jiang...  相似文献   

19.
Nowadays,the high-critical-temperature radio frequency superconducting quantum interference device (high-T c rf SQUID) is usually coupled to a dielectric resonator that is a standard 10 × 10 × 1 mm 3 SrTiO 3 (STO) substrate with a YBa 2 Cu 3 O 7-δ (YBCO) thin-film flux focuser deposited on it.Recently,we have simulated a dielectric resonator for the high-T c rf SQUID by using the ANSOFT High Frequency Structure Simulator (ANSOFT HFSS).We simulate the resonant frequency and the quality factor of our dielectric resonator when it is unloaded or matches a 50-impedance.The simulation results are quite close to the practical measurements.Our study shows that ANSOFT HFSS is quite suitable for simulating the dielectric resonator used for the high-T c rf SQUID.Therefore,we think the ANSOFT HFSS can be very helpful for investigating the characteristics of dielectric resonators for high-T c rf SQUIDs.  相似文献   

20.
The design requirement and principle of the deflection magnet for Magnetron and Penning H ion source are discussed. It is proved that there exists a maximum emittance for the beam that may be transformed by the magnet into a state with equal Twiss parameters of αry and βry, which is the requisite condition to get a minimum emittance at the entrance of RFQ after transporting by a LEBT with solenoids. For this maximum emittance, the corresponding magnetic field gradient index is 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号