首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Large High Altitude Air Shower Observatory(LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array(KM2 A), which includes the electromagnetic detector array and muon detector array, water Cherenkov detector array(WCDA) and wide field-of-view Cherenkov telescope array(WFCTA). One of the main scientific objectives of LHAASO is to precisely measure the cosmic rays energy spectrum of individual components from 10~(14) eV to 10~(18) eV. The hybrid observation will be employed by the LHAASO experiment, in which the lateral and longitudinal distributions of extensive air shower can be observed simultaneously. Thus, many kinds of parameters can be used for primary nuclei identification. In this paper, high purity cosmic ray simulation samples of the light nuclei component are obtained using multi-variable analysis. The apertures of 1/4 LHAASO array for pure proton and mixed proton and helium(HHe) samples are 900 m~2 Sr and1800 m~2 Sr, respectively. Prospect of obtaining proton and HHe spectra from 100 TeV to 4 PeV is discussed.  相似文献   

2.
刘斌  吕焕文  李兰  唐松乾 《强激光与粒子束》2018,30(1):016007-1-016007-5
随着核应用领域的不断拓宽,放射源丢失事故发生的概率也随之增加。机载伽马谱仪可有效搜寻地面放射源,然而对于放射源丢失于水域的情况,由于伽马射线经由水层屏蔽后可探测性降低,故利用放射源在水中产生的切伦科夫辐射对其进行搜寻显得十分重要。采用MCNP与Geant4相结合的方法,以及在Geant4程序中采用接续计算技巧,对Co-60源在水中的切伦科夫光产生以及传输进行了计算,计算表明,切伦科夫光经水中传播后,主要波段在300~600 nm,强度呈由边缘到中心渐强的特征分布,分布范围大致与放射源在水中的深度一致,在水中传输300 m后其光通量约为100 cm-2,可利用光谱特征和强度分布特征对其进行测量。  相似文献   

3.
In order to observe gamma rays in the 100 TeV energy region, the 4500 m2 underground muon detector array using water Cherenkov technique is constructed, forming the TIBET Ⅲ+MD hybrid array. Because the showers induced by primary gamma rays contain much fewer muons than those induced by primary hadrons, significant improvement of the gamma ray sensitivity for TIBET Ⅲ+MD array is expected. In this paper, the design and performance of the MD-A detector with large Tyvek bag is reported.  相似文献   

4.
LHAASO-WCDA is a large ground-based water Cherenkov detector array planned to be built at ShangriLa, Yunnan Province, China. As a major component of the LHAASO project, the main purpose of LHAASO-WCDA is to survey the northern sky for very-high-energy(above 100 GeV) gamma ray sources and measure the spectrum. To gain full knowledge of the water Cherenkov technique and to investigate the engineering issues, a 9-cell detector array has been built at the Yang-Ba-Jing site, neighboring the ARGO-YBJ experiment. With the array, charge calibration methods for both low and high ranges of the PMT readout are studied, whose result shows that a precision at several percentages can be reached, which can satisfy the requirement of the detector array. During the long term operation, the charge calibration stability and environmental afection are studied; in this paper, the results are discussed. These calibration methods are proposed to be applied in the future LHAASO-WCDA project.  相似文献   

5.
Study of Tyvek reflectivity in water   总被引:1,自引:0,他引:1  
Tyvek is widely used as the inner lining material of water Cherenkov detectors. Therefore, information about its optical properties plays an important role in the simulation and reconstruction of particles passing through water Cherenkov detectors. In this paper, a water tank experiment is performed to study the Tyvek reflectivity in water. The so-called UNIFIED model, which is an optical model of surface reflection in Geant4, is adopted to describe the Tyvek reflectivity. Two key optical parameters are obtained from a comparison between the measured data and a Monte Carlo simulation.  相似文献   

6.
The Large High Altitude Air Shower Observatory(LHAASO) is to be built at Daocheng, Sichuan Province, China. As one of the major components of the LHAASO project, a Water Cherenkov Detector Array(WCDA), with an area of 78000 m~2, contains 350000 tons of purified water. The water transparency and its stability are critical for successful long-term operation of this project. To gain full knowledge of the water Cherenkov technique and investigate the engineering issues, a 9-cell detector array has been built at the Yangbajing site, Tibet, China. With the help of the distribution of single cosmic muon signals, the monitoring and measurement of water transparency are studied. The results show that a precision of several percent can be obtained for the attenuation length measurement,which satisfies the requirements of the experiment. In the near future, this method could be applied to the LHAASOWCDA project.  相似文献   

7.
The method for reconstructing the cascade curve by the Cherenkov radiation in water of the NEVOD detector with a dense spatial array of optical modules is discussed. Cascades are generated by near-horizontal muons which are separated by the DECOR coordinate detector. The cascade curves and the cascade energy spectrum measured in an ~8000-hour measurement series are presented.  相似文献   

8.
9.
Methods for reconstructing the energy, event type, direction of motion, and injection point for electrons and muons in a water Cherenkov neutrino telescope similar to the SuperKamiokande detector are considered. The limiting resolutions estimated on the basis of an event simulation are compared with the values reported by the SuperKamiokande Collaboration.  相似文献   

10.
We present a method for determining the energy of the primary particle that generates an extensive air shower (EAS) of comic rays based on measuring the total flux of Cherenkov light from the shower. Applying this method to Cherenkov light measurements at the Yakutsk EAS array has allowed us to construct the cosmic ray energy spectrum in the range 1015 ? 3 × 1019 eV.  相似文献   

11.
We calculated the pulses of the Cherenkov light of extensive atmospheric showers in Cherenkov radiation detectors at the Yakutsk array in the framework of the QGSJET-II model. It is shown that the calculated width of a pulse of Cherenkov light in a vertical proton-induced shower of energy of 1018–1020 eV increases from 50 ns at a distance of 200 m from the shower axis to 700 ns at a distance of 1 km.  相似文献   

12.
The High Altitude Detection of Astronomical Radiation (HADAR) experiment is a refracting terrestrial telescope array based on the atmospheric Cherenkov imaging technique. It focuses the Cherenkov light emitted by extensive air showers through a large aperture water-lens system for observing very-high-energy γ-rays and cosmic rays. With the advantages of a large field-of-view (FOV) and low energy threshold, the HADAR experiment operates in a large-scale sky scanning mode to observe galactic sources. This study presents the prospects of using the HADAR experiment for the sky survey of TeV γ-ray sources from TeVCat and provids a one-year survey of statistical significance. Results from the simulation show that a total of 23 galactic point sources, including five supernova remnant sources and superbubbles, four pulsar wind nebula sources, and 14 unidentified sources, were detected in the HADAR FOV with a significance greater than 5 standard deviations (σ). The statistical significance for the Crab Nebula during one year of operation reached 346.0 σ and the one-year integral sensitivity of HADAR above 1 TeV was ~1.3%–2.4% of the flux from the Crab Nebula.  相似文献   

13.
The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.  相似文献   

14.
The main characteristics of the HYDRA hydroacoustic antenna intended for the detection of signals generated by cores of extensive air showers in a water Cherenkov detector involved in the NEVOD experimental complex are considered. Primary attention is focused on the calibration of antenna sensors and on the selection of an optimum trigger that ensures an effective detection of acoustic signals generated by cores of extensive air showers in the water volume of the Cherenkov detector.  相似文献   

15.
The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.  相似文献   

16.
Physics of Atomic Nuclei - The Yakutsk array is designed to study cosmic rays at energy 1015–1020 eV. The array detects charged particles, muons, Cherenkov light and radio emission....  相似文献   

17.
Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations ? ground-based, underground and underwater–is presented in the paper. The prospects of their further development are also discussed.  相似文献   

18.
分别采用分出截面法和积累因子法计算了水下放射性源透过一次屏蔽体的中子与射线的剂量场分布,并在这些分布条件下,利用Geant4软件射线在穿越二次屏蔽体后继而穿越后续水层,计算出在3 m水层中产生的切伦科夫(Cherenkov)光通量分布和光谱分布。以纯水为传播介质,在考虑Cherenkov光在不同水层中传播所造成的几何衰减和水层吸收等因素后,由计算获得了Cherenkov光光斑大小和强度分布。  相似文献   

19.
利用切伦科夫辐射方向性极好的特性进行电子束发散角的测量是一个比较有希望的方法,但转换靶材料对电子的库伦作用力等因素又使得电子束散角展宽,对发散角的测量产生影响。在将转换靶划分成多重薄片并以串联的形式构建了靶模型,考虑了库仑力、多重散射、轫致辐射、电离等全物理过程作用效果的情况下,利用蒙特卡罗模拟软件相关程序对电子在靶材料中的发散过程进行了仿真。基于电子束散角分布与切伦科夫辐射光子分布相对应的原理,完成了对电子束发散角测量技术的模拟,获得了转换靶材料及其厚度、电子束能散、测量系统光学带宽等对电子束发散角测量的影响规律,为测量系统的设计及数据反演处理工作提供了指导性的建议。模拟结果显示,基于切伦科夫辐射进行电子束发散角测量的方法具有可行性,具有一定的对电子束发散角分布进行测量的能力。  相似文献   

20.
The Large High Altitude Air Shower Observatory (LHAASO) project is proposed to study high energy gamma ray astronomy (40 GeV-1 PeV) and cosmic ray physics (20 TeV-1 EeV). The wide field of view Cherenkov telescope array, as a component of the LHAASO project, will be used to study the energy spectrum and composition of cosmic rays by measuring the total Cherenkov light generated by air showers and the shower maximum depth. Two prototype telescopes have been in operation since 2008. The pointing accuracy of each telescope is crucial for the direction reconstruction of the primary particles. On the other hand, the primary energy reconstruction relies on the shape of the Cherenkov image on the camera and the unrecorded photons due to the imperfect connections between the photomultiplier tubes. UV bright stars are used as point-like objects to calibrate the pointing and to study the optical properties of the camera, the spot size and the fractions of unrecorded photons in the insensitive areas of the camera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号