首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This letter presents a holographic photonic crystal (H-PhC) Al-doped ZnO (AZO) transparent Ohmic contact layer on p-GaN to increase the light output of GaN-based LEDs without destroying the p-GaN. The operating voltage of the PhC LEDs at 20 mA was almost the same as that of the typical planar AZO LEDs. While the resultant PhC LED devices exhibited significant improvements in light extraction, up to 1.22 times that of planar AZO LEDs without PhC integration. Temperature dependence of the integrated photoluminescence intensity indicates that this improvement can be attributed to the increased extraction efficiency due to the surface modification. These results demonstrate that the surface-treated AZO layer by H-PhCs is suitable for fabricating high-brightness GaN-based LEDs.  相似文献   

2.
ITO界面调制层对GZO电极LED器件性能的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
采用磁控溅射制备GZO和具有ITO界面调控层的GZO(ITO/GZO)透明导电薄膜作为大功率LED的电流扩散层,对比研究界面调控层对LED器件性能的影响。研究结果表明,ITO/GZO薄膜的透过率在可见光区达80%以上,退火后的ITO/GZO薄膜有较低的电阻率(1.15×10-3 Ω·cm)。ITO调控层的介入能够调制GZO表面粗糙度,有利于改善LED外量子效率,降低GZO/p-GaN界面的接触势垒,提高LED器件的光电性 能。通过ITO界面调控后,LED器件20 mA驱动电流下的工作电压从9.5 V降低为6.8 V,发光强度从245 mcd 升到297 mcd,提高了20%;驱动电流为35 mA时,其发光强度从340.5 mcd 升到511 mcd,提高了50%。  相似文献   

3.
Wavelength-dependence of light extraction efficiency (LEE) in AlGaN-based ultraviolet (UV) light-emitting diode (LED) structures is numerically studied based on three-dimensional finite-difference time-domain methods. Due to strong UV light absorption in the p-GaN contact layer, LEE of the UV vertical LED structures remains to be only 6–7 % for the transverse-electric mode and 2–3 % for the transverse-magnetic mode, respectively. The effective LEE of UV LEDs is calculated by considering the optical polarization-dependent LEE, and is found to increase from 4 to 5.5 % as the wavelength increases from 260 to 360 nm. It is shown that the wavelength-dependence of LEE can partially explain the decrease in external quantum efficiency with decreasing wavelengths in AlGaN-based UV LEDs.  相似文献   

4.
p-GaN surfaces axe nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices, This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces,  相似文献   

5.
To improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs), periodic semisphere patterns with 3.5 μm width, 1.2 μm height, and 0.8 μm spacing were formed on sapphire substrate by dry etching using BCl3/Cl2 gas chemistry. The indium tin oxide (ITO) transparent conductive layer was patterned by wet etching to reduce the total internal reflection existing along between p-GaN, ITO, and air. At 350 mA injection current, the high power LED by integrating patterned sapphire substrate with patterned ITO technology exhibited a 36.9% higher light output power than the conventional LEDs.  相似文献   

6.
车振  张军  余新宇  陈哲 《应用光学》2015,36(4):606-611
为了提高GaN基LED芯片的光提取效率,以GaN基LED芯片为研究对象,建立了在蓝宝石衬底出光面和外延生长面上具有半球型图形的LED倒装芯片模型,并利用光学仿真软件对图形参数进行优化设计。实验结果表明:在蓝宝石衬底的出光面和外延生长面双面都制作凹半球型图形对芯片光提取效率的提高效果最好,并且当半球的半径为3 m,周期间距为7 m时,GaN基LED倒装芯片的最大光提取效率为50.8%,比无图形化倒装芯片的光提取效率提高了115.3%。  相似文献   

7.
The AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with p-hBN layer are investigated numerically. In comparison with the conventional AlGaN DUV LEDs, the proposed LED can significantly improve the carrier injection, radiative efficiency, as well as the electroluminescence (EL) intensity under the same applied forward bias. Simultaneously, the light extraction efficiency in the LED using p-hBN instead of p-AlGaN exhibits a more than 250% increase at the applied voltage of 7.5 V due to the smaller loss of reflection and absorption of the emitted light.  相似文献   

8.
顾文  石继锋  李喜峰  张建华 《发光学报》2012,33(10):1127-1131
采用磁控溅射的方法在p-GaN上制备了GZO透明导电薄膜,通过在p-GaN和GZO界面之间插入AgOx薄层来改善LED器件的接触性能。研究结果表明:氮气退火后,采用界面插入层的AgOx/GZO薄膜电阻率为5.8×10-4Ω.cm,在可见光的透过率超过80%。AgOx界面插入层有效地降低了GZO与p-GaN之间的接触势垒,表现出良好的欧姆接触特性,同时使LED器件的光电性能获得了显著的提高。在50 mA的注入电流下,相比于常规的GZO电极LED器件,AgOx/GZO电极LED器件的正向电压由9.68 V降至6.92 V,而发光强度提高了13.5%。  相似文献   

9.
S.-K. Lee  T.-H. Kim  S.-Y. Lee  K.-C. Choi 《哲学杂志》2013,93(14-15):2105-2115
We report on high-brightness GaN nanowire UV–blue light emitting diodes (LEDs), which are fabricated by coupling of n-GaN nanowires and p-GaN substrates using two assembly methods, random dispersion (RD) and dielectrophoresis assisted assembly deposition (DAAD). These GaN nanowire LEDs have bright UV–blue emission (411–437?nm) from the n-GaN nanowire/p-GaN substrate junction and the light emission is strong enough to be observed with the naked eye even for a single GaN nanowire LED. The results reported here should have significant implications for the fabrication of highly efficient, low-cost UV–blue LEDs with low power consumption, as compared to conventional thin-film based GaN LEDs.  相似文献   

10.
Yidan Zhang 《中国物理 B》2023,32(1):18509-018509
A low hole injection efficiency for InGaN/GaN micro-light-emitting diodes (μLEDs) has become one of the main bottlenecks affecting the improvement of the external quantum efficiency (EQE) and the optical power. In this work, we propose and fabricate a polarization mismatched p-GaN/p-Al$_{0.25}$Ga$_{0.75}$N/p-GaN structure for 445 nm GaN-based μLEDs with the size of $40 \times 40 $μm$^{2}$, which serves as the hole injection layer. The polarization-induced electric field in the p-GaN/p-Al$_{0.25}$Ga$_{0.75}$N/p-GaN structure provides holes with more energy and can facilitate the non-equilibrium holes to transport into the active region for radiative recombination. Meanwhile, a secondary etched mesa for μLEDs is also designed, which can effectively keep the holes apart from the defected region of the mesa sidewalls, and the surface nonradiative recombination can be suppressed. Therefore, the proposed μLED with the secondary etched mesa and the p-GaN/p-Al$_{0.25}$Ga$_{0.75}$N/p-GaN structure has the enhanced EQE and the improved optical power density when compared with the μLED without such designs.  相似文献   

11.
Improvement in the light extraction efficiency (LEE) of GaN-based green light emitting diodes (LEDs) with ZnO nanostructures synthesized by a hydrothermal method is reported. Formation of ZnO nanorods, hemispheres, and cones was controlled by varying the pH of the aqueous synthesis solution. The shape of the ZnO nanostructures integrated onto the LEDs shows a strong relationship with the LEE characteristics of GaN-based green LEDs. The electroluminescence (EL) intensity of LEDs covered by ZnO nanostructures increased compared to conventional LEDs. In terms of LEE, LEDs with surface-textured ZnO hemispheres showed the highest EL intensity, which can be attributed to an increase in the effective critical angle, the escape cone, and multiple scattering. Finite difference time domain (FDTD) simulation was conducted to theoretically confirm the experimental results.  相似文献   

12.
The surface patterning of the indium tin oxide (ITO) transparent current layer has been investigated to improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs). LEDs with periodic micro-hexagon patterned ITO have been fabricated utilizing standard lithography techniques and inductively coupled plasma (ICP) technology. The luminance intensity of the LED chips with patterned ITO following 160 s ICP etching was enhanced by about 50% compared to the LED chips with unpatterned ITO. Detailed processing parameters are provided. scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to examine the micro-structures. The results indicate that the surface-patterned ITO technique could have potential applications in high-power GaN-based LEDs.  相似文献   

13.
采用MOCVD技术在硅衬底上生长了含有7个黄光量子阱和1个绿光量子阱的混合有源区结构的InGaN基黄绿双波长LED外延材料,研究了电子阻挡层前p-GaN插入层厚度对黄绿双波长LED载流子分布及外量子效率(EQE)的影响。通过LED变温电致发光测试系统对LED光电性能进行了表征。结果表明,100 K小电流时随着电流密度的增大,三组样品的绿光峰与黄光峰相对强度的比值越来越大,且5.5 A·cm^-2的电流密度下,随着温度从300 K逐步降低至100 K,三组样品的绿光峰与黄光峰相对强度的比值也越来越大,说明其载流子都在更靠近p型层的位置发生辐射复合。三组样品的p-GaN插入层厚度为0,10,30 nm时,EQE峰值依次为29.9%、29.2%和28.2%,呈现依次减小的趋势,归因于p-GaN插入层厚度越大,p型层越远离有源区,空穴注入也越浅。电子阻挡层前p-GaN插入层可以有效减小器件EL光谱中绿光峰随着电流密度增加时峰值波长的蓝移(33 nm),实现了对低温发光光谱的调控。  相似文献   

14.
A simple method to fabricate one-chip white light emitting diodes (LEDs) is proposed. A series of p-GaN/i-ZnO/n-ZnO heterojunctions fabricated by pulsed laser deposition exhibit simultaneous Mg-related p-GaN (blue-violet) and deep-level i-ZnO (yellow) emissions under forward bias. Current–voltage measurements show a typical rectifying characteristic. Yellow emission intensity, and consequently the ratio of yellow to blue-violet emission, are tunable through control of the i-ZnO layer thickness. Heterojunctions with a 20 nm-thick i-ZnO layer exhibit white electroluminescence. PACS  78.60.Fi; 73.40.Lq; 85.60.Jb  相似文献   

15.
We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaNbased light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal-organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.  相似文献   

16.
Light-emitting diodes (LEDs) were formed by hydrothermally growing n-ZnO nanostructures on p-GaN with or without seed layers. The performance of the fabricated LEDs was studied. The seed layers not only have a great influence on the morphology and density of the ZnO nanostructures but also determine the lighting bias and emitting mechanism. The LEDs without seed layers and with sputtered seed layers exhibit light emission only under reverse bias, which is believed due to the GaN buffer layer/p-GaN p–n junction. The LEDs with sol–gel seed layers exhibit light emission under both forward and reverse biases. With the increase of the forward bias, the LEDs first demonstrate a red electroluminescence emission coming from the sol–gel seed layers and then demonstrate an orange emission coming from the ZnO nanorods. The sol–gel seed layer and the interface play a very important role in the electroluminescence.  相似文献   

17.
Progress with GaN-based light emitting diodes(LEDs) that incorporate nanostructures is reviewed,especially the recent achievements in our research group.Nano-patterned sapphire substrates have been used to grow an Al N template layer for deep-ultraviolet(DUV) LEDs.One efficient surface nano-texturing technology,hemisphere-cones-hybrid nanostructures,was employed to enhance the extraction efficiency of In GaN flip-chip LEDs.Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core.Based on the nanostructures,we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask.Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer,the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%.Furthermore,nanostructures have been used for the growth of GaN LEDs on amorphous substrates,the fabrication of stretchable LEDs,and for increasing the3-d B modulation bandwidth for visible light communication.  相似文献   

18.
《Comptes Rendus Physique》2018,19(3):113-133
The realization of the first high-brightness blue-light-emitting diodes (LEDs) in 1993 sparked a more than twenty-year period of intensive research to improve their efficiency. Solutions to critical challenges related to material quality, light extraction, and internal quantum efficiency have now enabled highly efficient blue LEDs that are used to generate white light in solid-state lighting systems that surpass the efficiency of conventional incandescent lighting by 15–20×. Here we discuss the initial invention of blue LEDs, historical developments that led to their current state-of-the-art performance, and potential future directions for blue LEDs and solid-state lighting.  相似文献   

19.
齐赵毅  胡晓龙  王洪 《发光学报》2017,38(3):338-346
利用FDTD方法研究具有表面微纳结构氮化镓基倒装薄膜LED芯片的光萃取效率。通过优化表面结构并研究了器件的光萃取效率随p-Ga N层厚的变化。研究发现,具有表面光子晶体和六棱锥结构的器件的光萃取效率最大值比无表面微结构器件分别提高了56%和97%。尽管两种表面结构都能有效提高器件的光萃取效率,然而采用光子晶体的方案对p-Ga N厚度和腔长要求极为苛刻。采用六棱锥结构则不仅可以获得更高的光萃取效率,并且还将大大降低实验上材料外延生长及器件制备的难度。  相似文献   

20.
马莉  沈光地  陈依新  蒋文静  郭伟玲  徐晨  高志远 《物理学报》2014,63(3):37201-037201
针对AlGaInP系发光二极管(LED)电极阻挡出光、衬底吸收、全反射角小导致器件出光效率低、热积累大、饱和特性差等问题,提出了一种具有复合电流输运增透窗口层、复合DBR反射镜和电流阻挡层结构的新型LED,并测试了其饱和特性和寿命.电流分布模拟显示:新型LED电极下仅存在极小的无效电流;实验结果表明新型LED出光效率高,饱和电流大,饱和电流时光强约为常规LED的3倍,光电性能明显提升.器件饱和特性和老化实验研究显示:新型LED寿命长达17.8×104h,器件内部发热量低,具有高饱和特性和高可靠性,适合在大电流大功率下工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号