首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A conductive material, Pb2Ru2O7-x (PRO), containing Pb in a cubic structure was introduced into a Pt/PZT interface in an attempt to improve the ferroelectric properties of PZT films. PRO and PZT films were prepared by rf magnetron sputtering and chemical solution deposition, respectively. The resistivity of PRO thin films in a hybrid-type electrode (PRO/Pt) structure was approximately 35–45 μΩ·cm and the surface roughness remained constant with increasing annealing temperature. The PRO interlayers suppressed the loss of Pb in PZT layers by diffusion to the Pt/PZT interface. The increase in remanent polarization was largely dependent on the PRO interlayers inserted at the bottom-Pt/PZT interface rather than at the top-Pt/PZT interface. In addition, the leakage-current behavior of PZT films in a sandwich structure was improved substantially compared to the case of PRO interlayers only at the bottom-Pt/PZT interface. Thus, the PRO interlayers play an important role in improving the ferroelectric properties of PZT thin films for use in nonvolatile memory device applications. PACS 68.55.-a; 73.40.Rw; 73.61.Ng; 77.55.+f; 81.15.Cd  相似文献   

2.
We have investigated the chemical and electrical properties of very thin (<32 Å thick) silicon nitride films grown by rapid thermal nitridation of silicon. These films were of interest as a possible means of tailoring the barrier heights of silicon Schottky barrier diodes. Auger and XPS analysis showed that the level of oxygen contamination in the films was very low ([N]/[N]+[O]) =0.85 to 0.95). The oxygen is located primarily at the surface and interface of the films. Metal-nitride-silicon devices were characterized by I-V and C-V techniques. These measurements indicated an increase in barrier heights to p-type substrates and a decrease in barrier heights to n-type substrates compared to values measured in the absence of the nitride layers. The magnitude of the change in barrier height increases with increasing nitride thickness. The barrier height can be varied reproducibly over a wide range. For molybdenum on p-type, this range is greater than half the bandgap. For titanium and molybdenum on p-type diodes, barrier heights higher than 1.0 V can be achieved. These measurements could be explained by a reduction in the density of silicon interface states with increasing nitride thickness or by the presence of positive fixed charge in the nitride layer.  相似文献   

3.
Qi Qin 《中国物理 B》2022,31(7):78502-078502
In the post-Moore era, neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks. Memristors have been proposed as a key part of neuromorphic computing architectures, and can be used to emulate the synaptic plasticities of the human brain. Ferroelectric memristors represent a breakthrough for memristive devices on account of their reliable nonvolatile storage, low write/read latency and tunable conductive states. However, among the reported ferroelectric memristors, the mechanisms of resistive switching are still under debate. In addition, there needs to be more research on emulation of the brain synapses using ferroelectric memristors. Herein, Cu/PbZr0.52Ti0.48O3 (PZT)/Pt ferroelectric memristors have been fabricated. The devices are able to realize the transformation from threshold switching behavior to resistive switching behavior. The synaptic plasticities, including excitatory post-synaptic current, paired-pulse facilitation, paired-pulse depression and spike time-dependent plasticity, have been mimicked by the PZT devices. Furthermore, the mechanisms of PZT devices have been investigated by first-principles calculations based on the interface barrier and conductive filament models. This work may contribute to the application of ferroelectric memristors in neuromorphic computing systems.  相似文献   

4.
射频磁控溅射法室温下在Pt/Ti/SiO2/Si上制备非晶Pb(Zr048Ti052)O3薄膜,非晶PZT薄膜分别经常规炉退火(CFA)处理和快速热退火(RTA)处理晶化为(100),(111)不同择优取向的多晶薄膜. 采用x射线衍射测定了薄膜相组分、择优取向度;用原子力显微镜和压电响应力显微镜观察了薄膜表面形貌,以及对应区域由自发极化形成的铁电畴像,观察了不同取向薄膜的电畴分布特征. 结果表明,RTA晶化过程钙钛矿结构PZT结晶主要以PZT/Pt界面处的PtPb化合物为成核点异质形核并类似外延的结晶生长,沿界面结晶速率远大于垂直膜面结晶速率,而CFA晶化样品成核发生在膜内杂质缺陷处,以同质成核为主. 不同的成核机理导致了不同晶面择优取向生长. 关键词: PZT薄膜 结晶 形核 力显微技术  相似文献   

5.
We investigate the repolarization phenomenon in a ferroelectric film. Our ferroelectric sample was lead zirconate titanate (PZT) obtained by sol-gel synthesis and deposited by spin coating on ITO/glass substrate. A series of repolarizations were induced in the ferroelectric film by applying a triangular wave and the current peaks related to the switchings of the ferroelectric domains were acquired for statistical analyses. It is shown that the dynamics and statistics of polarization switchings are well simulated by a simple mean-field model in which a double-well, asymmetric potential is included to describe the asymmetry at the PZT-ITO interface.  相似文献   

6.
Au/PZT/BIT/p-Si异质结的制备与性能研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用脉冲激光沉积(PLD)工艺,制备了以Bi4Ti3O12(BIT)为过渡阻挡层的Au/PZT/BIT/p-Si异质结.研究了BIT铁电层对Pb(Zr0.52Ti0.48)O3(PZT)薄膜晶相结构、铁电及介电性能的影响,对Au/PZT/BIT/p-Si异质结的导电机制进行了讨论.氧气氛530℃淀积的PZT为多晶铁电薄膜,与直接淀积在Si基片上相比,加入BIT铁电层后PZT铁 关键词: 铁电薄膜 异质结构 脉冲激光沉积(PLD)  相似文献   

7.
Electrical properties of ferroelectric films are influenced by factors that include methods of synthesis and characteristics of the substrate electrode. Conductivity measurements were performed on PZT (lead zirconate titanate) thin films deposited by sol–gel synthesis on a copper electrode to investigate electric properties and isolate the principal charge carriers. A semiconducting PZT/Cu interface appears during thermal treatment, significantly influencing electric conduction. A power law, describing the transport mechanism across the PZT film, was found empirically.  相似文献   

8.
A method is developed for determining the trap density at the metal/ferroelectric interfaces in a completely depleted ferroelectric film with two Schottky barriers. The method is based on the recharging of traps induced by an external pulsed bias. The ranges of the bias fields and of the parameters of the metal/ferro-electric/metal structure for which analytical solution of the Poisson equation is possible are found. Using this method and measurements of the transient current, the density of the charge trapped at the upper and lower interfaces of Pt(Ir)/PZT/Ir(Ti/SiO2/Si) capacitors is determined. The interface charge as estimated from the trap density proved to be much smaller than the residual polarization of the PZT film. The observed correlation between the symmetry of the interface trap charges and the symmetry of the hysteresis loops and switching currents indicates the reliability of the estimation of the trap density determined using the proposed method.  相似文献   

9.
In this paper, two electrode-barrier structures based on Pt-Rh and Pt-Ir alloys and their oxides are proposed for high-density ferroelectric memory applications. These electrode-barriers are multi-layered, comprising a diffusion barrier (PtRhOx or PtIrOx), metal alloy (PtRh or PtIr) and another PtRhOx or PtIrOx layer for fatigue reduction in the case of PZT capacitors. Both lead zirconate titanate (PZT) and strontium bismuth tantalate (SBT) capacitors based on the electrode-barriers were used in the present study. The electrode-barrier structure acts as a conducting electrode as well as an excellent diffusion barrier for lead, bismuth, oxygen and silicon. The PZT test capacitors fabricated on these electrode-barriers showed excellent fatigue resistance with other ferroelectric properties being similar to those on Pt. Also, these electrode-barriers are stable, and remain conductive even up to the processing temperatures of SBT (750 °C). This makes direct integration of both PZT and SBT capacitors on to a poly-Si plug attainable. In addition, the conducting electrode-barrier structures can be deposited in situ, directly over n+polycrystalline Si, thereby significantly improving the density of the device. Received: 11 July 2000 / Accepted: 13 July 2000 / Published online: 30 November 2000  相似文献   

10.
《Current Applied Physics》2018,18(3):324-328
We report the fabrication of single-walled carbon nanotube (SWCNT) network transistors by ferroelectric Pb(Zr0.4Ti0.6)O3 (PZT) bottom-gating and investigate the polarization effects of PZT on the transport properties of the transistor device. Our devices exhibit typical p-channel transistor characteristics and a large hysteresis loop with high ON/OFF current ratio and large ON current as well as memory window (MW) measured up to 5.2 V. The origin of clockwise hysteresis is attributed to ferroelectric polarization modulated charge trapping/de-trapping process in the interface states between SWCNT networks and PZT. The retention time about 104s with two high stable current states preliminarily demonstrates great potential for future non-volatile memory applications based on such SWCNT/PZT hybrid systems.  相似文献   

11.
Polymer/lead zirconate titanate {[Pb(Zrx, Ti1-x)O3], PZT, x = 0.40} flexible composite films are prepared by solvent evaporation technique. Carbon tape used as a top and bottom electrodes for fabricating flexible PZT composite films. The phase purity and functional groups of PZT and polymer humps are confirmed by XRD and FTIR respectively. XPS analysis showed that PMMA contains carbon (C) and oxygen (O). Carbon (C), oxygen (O), lead (Pb), zirconium (Zr) and titanium (Ti) are present in PZT/PMMA composite films. The chemical states of Pb, Zr and Ti ions are 2+, 4+ and 4+ respectively confirmed by XPS. The higher forefinger bending motion of the film is found to reveal greater output voltage (5.2 V) than the output voltage (1.6 V) for slight bending motion of the forefinger. Therefore, based on the results human mechanical forces induce compressive stress on PZTs ferroelectric based composite films and are excellent candidate for energy harvester.  相似文献   

12.
The basic mechanisms of leakage current components of thin lead zirconate titanate (PZT) ferroelectric films grown by the sol-gel method have been studied. Characteristic regions of current-voltage characteristics with different charge transport mechanisms have been determined. It has been shown that there is an intermediate region which separates such regions. In one of them, the leakage current depends on properties of the contact of electrodes with PZT film at low voltages; in the other, the leakage current is controlled by intrinsic properties of the PZT film bulk, and the basic mechanism of charge transport is Poole-Frenkel emission. In the intermediate region, a stepwise change in the current has been observed, which is caused by relaxing breakdown of the Schottky barrier. Time dependences of the leakage currents have been determined. It has been shown that the leakage current decreases with increasing delay time before the Schottky barrier breakdown, and the dependence becomes opposite in character after the breakdown.  相似文献   

13.
The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.  相似文献   

14.
王品之  朱素华  潘涛  吴银忠 《中国物理 B》2015,24(2):27301-027301
The interface with a pinned dipole within the composite barrier in a ferroelectric tunnel junction(FTJ) with symmetric electrodes is investigated.Different from the detrimental effect of the interface between the electrode and barrier in previous studies,the existence of an interface between the dielectric SrTiO3 slab and ferroelectric BaTiO3 slab in FTJs will enhance the tunneling electroresistance(TER) effect.Specifically,the interface with a lower dielectric constant and larger polarization pointing to the ferroelectric slab favors the increase of TER ratio.Therefore,interface control of high performance FTJ can be achieved.  相似文献   

15.
A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.  相似文献   

16.
This paper reports on a study of the electrical properties of 0.7–1-μm-thick textured PZT ferroelectric films prepared by rf magnetron sputtering of a PbZr0.54Ti0.46O3 target which additionally contained 10 mol % lead oxide. Such films are shown to feature a combination of a self-polarized state and migratory polarization. The totality of the data obtained suggest that the films had n-type conduction. As shown by the laser beam modulation technique, the polarization was distributed nonuniformly in depth, with most of the poled state localized near the lower interface of the thin-film ferroelectric capacitor. The mechanism underlying the onset of this self-polarization is related to the charging of the lower interface of the structure by electrons, which occurs during the cooling following the high-temperature treatment of the PZT film, and to poling of the bulk of the film by the charged interface. This mechanism of the self-polarization of ferroelectric films is believed to have a universal character. __________ Translated from Fizika Tverdogo Tela, Vol. 44, No. 4, 2002, pp. 739–744. Original Russian Text Copyright ? 2002 by Pronin, Kaptelov, Tarakanov, Shaplygina, Afanas’ev, Pankrashkin.  相似文献   

17.
蒋招绣  辛铭之  申海艇  王永刚  聂恒昌  刘雨生 《物理学报》2015,64(13):134601-134601
通过添加造孔剂的方法制备了四种不同孔隙率未极化PZT95/5铁电陶瓷. 采用非接触式的数字散斑相关性分析(digital image correltation, DIC)全场应变光学测量技术, 对多孔未极化PZT95/5 铁电陶瓷开展了单轴压缩实验研究, 讨论了孔隙率对未极化PZT95/5铁电陶瓷的力学响应与畴变、相变行为的影响. 多孔未极化PZT95/5铁电陶瓷的单轴压缩应力-应变关系呈现出类似于泡沫或蜂窝材料的三阶段变形特征, 其变形机理主要归因于畴变和相变的共同作用, 与微孔洞塌缩过程无关. 多孔未极化PZT95/5铁电陶瓷的弹性模量、压缩强度都随着孔隙率的增加而明显降低, 而孔隙率对断裂应变的影响较小. 预制的微孔洞没有改善未极化PZT95/5铁电陶瓷材料的韧性, 这是因为单轴压缩下未极化PZT95/5铁电陶瓷的断裂机理是轴向劈裂破坏, 微孔洞对劈裂裂纹传播没有起到阻碍和分叉作用. 准静态单轴压缩下多孔未极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而呈线性衰减, 但相变开始的临界体积应变却不依赖孔隙率.  相似文献   

18.
Structures of the transparent ferroelectric field-effect transistor PZT/SnO2/Al2O3 with “normal” and “anomalous” conductivity hystereses of the channel are prepared and investigated. The “normal” modulation loop for these structures is obtained for the first time. Antimony-doped SnO2/Al2O3 epitaxial films evaporated by a YAG laser from a metal target are used as a channel of the field-effect transistor. Ferroelectric PZT films are deposited using magnetron sputtering. The distribution of deep levels at the PZT/SnO2 interface is measured by the modified relaxation current method. It is established that the ratio between the polarization charge and the trap charge at the PZT/SnO2 interface critically affects the direction of the conductivity hysteresis of the channel.  相似文献   

19.
A. Bose 《Applied Surface Science》2010,256(21):6205-6212
PZT thin films of thickness (320-1040) nm were synthesized on Si/SiO2/Ti/Pt multilayered substrates by radio frequency magnetron sputtering. The influence of plasma pressure in the range of (0.24-4.9) Pa, during deposition, on the structural, electrical and ferroelectric properties of the PZT films was systematically studied. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and cross-sectional transmission electron microscopy (XTEM) were employed for structural study. Nano-probe Energy Dispersive (EDX) line scanning was employed to investigate the elemental distribution across the film-bottom electrode interface. I-V characteristics and polarization-electric field (P-E) hysteresis loop of the films were measured. The study reveals that the plasma pressure has a strong influence on the evolution and texture of the ferroelectric perovskite phase and microstructure of the films. At an optimum plasma pressure of 4.1 Pa, PZT films are grown with 93% perovskite phase with (1 1 1) preferred orientation and uniform granular microstructure. These films show a saturation polarization of 67 μC/cm2, remnant polarization of 30 μC/cm2 and coercive field of 28 kV/cm which, according to the literature, seem to be suitable for device applications.Transmission electron microscopy (TEM) study shows that at a plasma pressure of 4.1 Pa, the PZT/bottom Pt interface is sharp and no amorphous interlayer is formed at the interface. At a higher plasma pressure of 4.9 Pa, poor I-V and P-E hysteresis loop are observed which are interpreted as due to an amorphous interlayer at the film-bottom electrode interface which is possibly enriched in Pb, Zr, O and Pt.  相似文献   

20.
The aim of the present work is a comparative study by ballistic electron emission microscopy (BEEM) of PtSi/n-Si(100) interface electronic structures using the assumption of an energy-dependent transmission coefficient or an energy-independent transmission coefficient and the possible explanation of the standard deviation of the barrier height from the most probable barrier height. PtSi/n-Si(100) interfaces have been studied for PtSi layers with an average estimated thickness of 2–3 nm. Locally measured barrier heights show distributions with the most probable values of barrier heights between 0.734 eV and 0.829 eV and with standard deviations from these most probable values of barrier heights in the range 0.010–0.066 eV. The assumption of an energy-independent coefficient for transmission of electrons through the interface is more preferable since the treatment of experimental results using a square-law leads to a most probable value of the barrier height in accordance to other measurements. The standard deviations of barrier heights from the most probable barrier heights may be explained by the heterogeneity of the PtSi layer thickness. The experimental results show lower barrier height for a higher PtSi layer thickness. The decreasing barrier height is accompanied by an increasing amount of Pt interstitial atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号