首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
锌具有原料丰富、质量轻便、金属导电性与延展性好以及理论比容量高等优势,可以作为绿色可充电电池的理想电极材料。其中,以中性或弱酸性水溶液为电解质、锌为负极的锌基水系电池具有安全性高、电池材料廉价无毒、制备工艺简单、环境友好等特点,在储能和动力电池领域具有极高的应用价值和发展前景。但电池充放电过程中伴随的锌枝晶、析氢、腐蚀、钝化等问题限制了其实际应用。本文综述了锌基水系电池负极存在的问题及当前的解决策略,并对其负极研究发展方向进行了展望。  相似文献   

2.
水系锌离子电池因其高安全性、高容量、低价格等优点,有望成为下一代规模储能设备。然而,副反应、锌枝晶和有限的使用寿命阻碍了其实际应用。我们将电解质添加剂甘氨酸(Gly)引入到常规水系ZnSO4电解质中。Gly中的极性基团(—COOH和—NH2)可以调节Zn2+的溶剂化结构,从而重新分配Zn2+的沉积以避免枝晶和副反应发生。结果表明,在ZnSO4电解质中添加50 mmol·L-1的Gly后(ZnSO4-Gly),Zn||Zn对称电池在1 mA·cm-2和1 mAh·cm-2下,表现出良好的循环寿命(3 000 h),明显高于使用ZnSO4电解质的性能(300 h)。以ZnSO4-Gly为电解液的Zn||MnO2全电池,在比电容和倍率性能方面比无添加剂器件表现得更好。  相似文献   

3.
水系锌离子电池具有成本低廉、环境友好、安全、能量密度较高等特点,有望应用于大规模电化学储能装置.然而,目前使用的商业化锌箔负极相对正极活性材料大大过量,显著降低了电池的能量密度,且存在严重的穿孔和极耳脱落等问题.使用集流体负载锌作为负极可有效提高放电深度,同时避免电极穿孔失效.但是,集流体界面易产生锌枝晶与副反应,严重影响电池的循环寿命.本综述首先分析了锌枝晶与副反应的产生原因及其对锌负极电化学性能的影响,并从集流体材料成分选择与结构构建两方面总结了锌负极集流体的设计思路,包括选择亲锌性材料、设计择优取向基底与构建三维集流体结构.设计合适的集流体可有效调控锌金属的沉积与剥离行为,从而推进水系锌离子电池的实用化.  相似文献   

4.
水系锌离子电池(AZIBs)作为一种新兴电池储能技术,具有安全性高、价格低廉、能量密度高、环境友好、易制造等优点,在大规模储能等领域具有良好的应用价值和前景,近年引起了人们的广泛关注且发展迅速.作者从目前AZIBs存在的科学问题出发,综述了AZIBs在正负极材料及电解液方面取得的重要进展,对己开发的多种正极材料的特点及...  相似文献   

5.
王福慧  刘辉彪 《无机化学学报》2019,35(11):1999-2012
锌离子二次电池具有优异的充放电性能、高功率密度和能量密度、低成本、高安全性和环境友好的特点,极具发展前景。金属锌,因优异的导电性、低的平衡电势、高的理论比容量和低成本等因素,是水系二次电池中理想的负极材料,然而也存在着枝晶生长、腐蚀和钝化等问题,限制了锌离子二次电池的可逆容量和循环寿命,通过优化调节锌负极的形貌与表面修饰等方法可以提高电池性能。本文综述了水系锌离子二次电池负极材料的研究进展,涵盖了金属锌负极、复合锌负极和锌合金,且展望了锌负极的发展前景。  相似文献   

6.
采用原位化学反应策略,在Zn电极表面生长出Se单质,通过XRD、XPS、SEM和能谱表征,结果表明Se在Zn电极表面的成功合成,且Se在锌电极表面均匀分布。将Se@Zn电极和裸Zn电极分别组装为对称电池和以MnO2为正极的全电池进行性能比较,结果表明,Se@Zn对称电池在1 mA/cm2下可以运行1000小时以上,并保持27 mV的极化电压。Se@Zn||MnO2全电池在2 A/g电流密度下容量为136 mA·h/g,在1000次循环后,Se@Zn||MnO2全电池仍接有近100%的库仑效率,容量保持率为88%。  相似文献   

7.
水系锌离子电池(AZIBs)以低成本、高安全性和高环保特性在大规模储能领域具有广阔的应用前景,当前备受关注的正极材料是研究的热点.锰基化合物因具有资源丰富、环境友好和价格低廉等优点,是最具市场应用前景的一类正极材料.本文详细综述了不同锰基化合物的结构特点以及锰基AZIBs在充放电过程中涉及的四种储能机理,讨论了AZIB...  相似文献   

8.
水系锌离子电池(aqueous zinc-ion batteries,AZIBs)具有高安全性、低生产成本、锌资源丰富和环境友好等优点,被认为是未来大规模储能系统中极具发展前景的储能装置。目前,AZIBs的研究关键之一在于开发具有稳定结构和高容量的锌离子可脱嵌正极材料。钒基化合物用作AZIBs正极时,表现出可逆容量高和结构丰富可变等特点,受到了广泛的关注和研究。然而,钒基化合物的储锌机理较复杂,不同材料通常表现出各异的电化学性能和储能机理。在本综述中,我们全面地阐述了钒基化合物的储能机制,并探讨了钒基材料在水系锌离子电池中的应用和发展近况,以及它们的性能优化策略。在此基础上,也进一步地展望了水系锌离子电池及其钒基正极材料的发展方向。  相似文献   

9.
刘欢  马宇  曹斌  朱奇珍  徐斌 《物理化学学报》2023,39(5):2210027-0
水系锌离子电池(AZIBs)作为一种低成本、高安全的新兴且前景广阔的储能技术近年来备受关注。新型MXenes材料由于其独特的结构特征和物理化学性质,如易调节的二维结构、优异的导电性、化学组成多样和可控的表面化学特性,在AZIBs中表现出独特的应用优势。本文全面综述近年来MXenes在AZIBs中应用的研究进展,探讨MXenes应用于AZIBs正负极的结构设计及性能优化策略:在正极方面,MXenes可直接作为活性物质或活性物质前驱体、基体材料,以获得高活性、优异的循环寿命和倍率性能;在负极方面,MXenes可作为锌沉积的二维/三维载体、亲锌基体及锌金属界面保护层,以减缓电化学反应过程中锌金属的腐蚀和枝晶生长。此外,本文也对MXenes基材料在AZIBs中应用的发展方向进行展望。  相似文献   

10.
水系锌离子电池(ZIBs)以其低成本、高安全性和环境友好的优点受到了研究者的广泛关注,成为大规模电化学储能系统的理想选择之一。然而锌金属负极在应用时面临着锌枝晶生长、腐蚀反应和副反应等难以克服的障碍,严重制约了水系锌离子电池的发展。探索可替代锌金属的储锌负极是应对上述问题的有效策略,因此研究者围绕过渡金属氧化物、硫化物和导电聚合物开展了深入研究。以TiX2 (X = S, Se)为代表的二维过渡金属硫族化合物(TMDs)具有较大的层间距和快速的离子传输通道,可作为锌离子电池的负极,但其储锌反应机制尚未得到完整的揭示。在本文中,我们使用密度泛函理论(DFT)计算方法系统地研究锌离子在TiX2中的嵌入反应。首先我们采用群论去描述嵌锌TiX2的稳定层间构型的特点,定义了一个依赖于超胞并且只涉及平移旋转两种对称操作的群,其子群可以用来描述层间构型的对称性,而且用来描述最稳定构型的子群总是倾向于有最大的阶数。基于该计算得到的一系列对应于不同放电深度的TiX2的稳定结构,我们发现TiS2和TiSe2两种材料在锌嵌入/脱出过程中的开路电压(OCV)均低于0.5 V。态密度(DOS)的计算结果表明TiX2具有很好的电子导电性,而分波态密度(PDOS)的结果显示随着锌的嵌入闭壳层的Ti4+还原成开壳层的Ti3+,并且伴随着Zn―X键的生成。Bader电荷分析的结果表明随着X的嵌入,X相比Ti得到了更多的负电荷,意味着X也参与了TiX2的氧化还原过程。爬坡弹性带方法(CINEB)计算的结果证实了Zn2+在TiX2中具有较低的扩散能垒(对于TiS2是0.333 eV,对于TiSe2是0.338 eV)。本文的研究结果不仅从本质上证明了TiX2适合作为锌离子电池的嵌锌负极材料,而且为其他高性能TMDs电池材料的DFT研究提供了新的见解。  相似文献   

11.
Aqueous zinc-ion batteries have rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite-free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host–zinc interface and the zinc–electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite-free zinc anodes employed in aqueous zinc-ion batteries.  相似文献   

12.
Rechargeable aqueous zinc-ion batteries (ZIB) sparked a considerable surge of research attention in energy storage systems due to its environment benignity and superior electrochemical performance. Up to now, less efforts to delve into mechanisms of zinc metal anode and their electrochemical performance. Zn metal anodes sustain thorny issues with Zn dendrite growth, hydrogen evolution reaction, and Zn corrosion irreversible byproduct formation, which results in low coulomb efficiency (CE) and poor cycle ability of the battery. Herein, we reveal the fundamental understanding of the above issue, outline four step, including mass transfer, desolvation process, charge transfer and Zn cluster formation. It can be clearly seen from reported strategies to promote Zn anode stability that deals with one or more steps, thereby boosting the understanding of the issues of Zn anodes and benefiting the rational design to surmount the issue. We also sum up advanced materials and structure design such as the design of the anode surface and internal structure, electrolyte strategies, and multifunctional separators. Finally, possible tactics and future innovation direction for Zn-based batteries are proposed to achieve high performance aqueous Zinc-ion batteries.  相似文献   

13.
Smart self-protection is essential for addressing safety issues of energy-storage devices. However, conventional strategies based on sol-gel transition electrolytes often suffer from unstable self-recovery performance. Herein, smart separators based on thermal-gated poly(N-isopropylacrylamide) (PNIPAM) hydrogel electrolytes were developed for rechargeable zinc-ion batteries (ZIBs). Such PNIPAM-based separators not only display a pore structure evolution from opened to closed states, but also exhibit a surface wettability transition from hydrophilic to hydrophobic behaviors when the temperature rises. This behavior can suppress the migration of electrolyte ions across the separators, realizing the self-protection of ZIBs at high temperatures. Furthermore, the thermal-gated behavior is highly reversible, even after multiple heating/cooling cycles, because of the reversibility of temperature-dependent structural evolution and hydrophilic/hydrophobic transition. This work will pave the way for designing thermal-responsive energy-storage devices with safe and controlled energy delivery.  相似文献   

14.
Aqueous Zn batteries are promising energy-storage devices. However, their lifespan is limited by irreversible Zn anodes owing to water decomposition and Zn dendrite growth. Here, we separate aqueous electrolyte from Zn anode by coating a thin MOF layer on anode and filling the pores of MOF with hydrophobic Zn(TFSI)2-tris(2,2,2-trifluoroethyl)phosphate (TFEP) organic electrolyte that is immiscible with aqueous Zn(TFSI)2–H2O bulk electrolyte. The MOF encapsulated Zn(TFSI)2-TFEP forms a ZnF2-Zn3(PO4)2 solid electrolyte interphase (SEI) preventing Zn dendrite and water decomposition. The Zn(TFSI)2-TFEP@MOF electrolyte protected Zn anode enables a Zn||Ti cell to achieve a high average Coulombic efficiency of 99.1 % for 350 cycles. The highly reversible Zn anode brings a high energy density of 210 Wh kg−1 (of cathode and anode mass) and a low capacity decay rate of 0.0047 % per cycle over 600 cycles in a Zn||MnO2 full cell with a low capacity ratio of Zn:MnO2 at 2:1.  相似文献   

15.
贠潇如  陈宇方  肖培涛  郑春满 《电化学》2022,28(11):2219004
水系锌离子电池具有功率密度高、环境友好、安全性高、低成本和锌资源丰富等优点,被认为具有潜力成为下一代电化学储能系统。然而,正极材料较差的电化学性能制约了水系锌离子电池的未来发展。尽管氧化锰、氧化钒、普鲁士蓝类似物、有机材料等多种材料已被广泛研究,设计具有高性能的理想正极材料仍面临着巨大挑战。无氧钒基化合物由于具有高的电导率、大的层间距、低的离子扩散势垒和高的理论比容量,受到越来越多的关注。本文总结了无氧钒基化合物的研究进展,包括电极材料的设计、改善其电化学性能的有效途径以及复杂的储能机制,提出了无氧钒基化合物目前面临的挑战和未来的发展前景,为进一步制备新型高性能钒基正极材料提供指导。  相似文献   

16.
Zinc ion batteries (ZIBs) exhibit significant promise in the next generation of grid-scale energy storage systems owing to their safety, relatively high volumetric energy density, and low production cost. Despite substantial advancements in ZIBs, a comprehensive evaluation of critical parameters impacting their practical energy density (Epractical) and calendar life is lacking. Hence, we suggest using formulation-based study as a scientific tool to accurately calculate the cell-level energy density and predict the cycling life of ZIBs. By combining all key battery parameters, such as the capacity ratio of negative to positive electrode (N/P), into one formula, we assess their impact on Epractical. When all parameters are optimized, we urge to achieve the theoretical capacity for a high Epractical. Furthermore, we propose a formulation that correlates the N/P and Coulombic efficiency of ZIBs for predicting their calendar life. Finally, we offer a comprehensive overview of current advancements in ZIBs, covering cathode and anode, along with practical evaluations. This Minireview outlines specific goals, suggests future research directions, and sketches prospects for designing efficient and high-performing ZIBs. It aims at bridging the gap from academia to industry for grid-scale energy storage.  相似文献   

17.
Rechargeable aqueous zinc batteries are promising but hindered by unfavorable dendrite growth and side reactions on zinc anodes. In this study, we demonstrate a fast melting-solidification approach for effectively converting commercial Zn foils into single (002)-textured Zn featuring millimeter-sized grains. The melting process eliminates initial texture, residual stress, and grain size variations in diverse commercial Zn foils, guaranteeing the uniformity of commercial Zn foils into single (002)-textured Zn. The single (002)-texture ensures large-scale epitaxial and dense Zn deposition, while the reduction in grain boundaries significantly minimizes intergranular reactions. These features enable large grain single (002)-textured Zn shows planar and dense Zn deposition under harsh conditions (100 mA cm−2, 100 mAh cm−2), impressive reversibility in Zn||Zn symmetric cell (3280 h under 1 mA cm−2, 830 h under 10 mAh cm−2), and long cycling stability over 180 h with a high depth of discharge value of 75 %. This study successfully addresses the issue of uncontrollable texture formation in Zn foils following routine annealing treatments with temperatures below the Zn melting point. The findings of this study establish a highly efficient strategy for fabricating highly reversible single (002)-textured Zn anodes.  相似文献   

18.
Na‐ion batteries are an attractive alternative to Li‐ion batteries for large‐scale energy storage systems because of their low cost and the abundant Na resources. This Review provides a comprehensive overview of selected anode materials with high reversible capacities that can increase the energy density of Na‐ion batteries. Moreover, we discuss the reaction and failure mechanisms of those anode materials with a view to suggesting promising strategies for improving their electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号