首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有机太阳能电池(OSCs)活性层中的给体材料主要包括共轭聚合物与有机小分子,由于有机小分子给体具有结构确定、易于提纯、重复性高等独特的优势,近年来受到研究工作者的广泛关注。本工作中,我们采取具有良好共平面性的三联苯并二噻吩(TriBDT-T)为推电子(D)中心共轭单元,分别以罗丹宁(RN)、氰基罗丹宁(RCN)和1,3-茚二酮(IDO)为拉电子(A)共轭端基,设计并合成了三种具有A-D-A型结构的小分子给体材料TriBDT-T-RN、TriBDT-T-RCN和TriBDT-T-IDO。我们对比研究了三种端基对其热分解温度、吸收光谱和分子能级等基本性能的影响,并分别将三种小分子给体与非富勒烯型受体材料IT-4F共混制备器件,详细研究了活性层形貌与光伏性能之间的关系。结果表明,不同的A型端基对小分子给体材料的光学性能、电化学性能、光伏器件中活性层的微观形貌以及能量转换效率(PCE)产生显著影响。基于TriBDTT-RN:IT-4F、TriBDT-T-RCN:IT-4F和TriBDT-T-IDO:IT-4F的光伏器件的能量转换效率分别为9.25%、6.31%和6.18%。  相似文献   

2.
近年来,有机小分子体异质结太阳能电池因其制备工艺简单、廉价、轻便及柔性等优点而备受关注.理想的有机小分子给体材料是提高有机太阳能电池光电转换效率的基础.系统地综述了可溶液加工有机小分子太阳能电池给体材料的研究进展,并对其发展趋势和应用前景做了展望.  相似文献   

3.
吕敏  周瑞敏  吕琨  魏志祥 《化学学报》2021,79(3):284-302
随着新型小分子给体材料和非富勒烯小分子受体材料的开发和应用, 非富勒烯全小分子有机太阳能电池(NF-ASM OSCs)的光电转换效率已经突破15%, 并逐渐接近聚合物太阳能电池的效率. 相比于聚合物电子给体材料, 小分子电子给体材料拥有其独特的优势, 例如合成批次性差异小、分子量明确和易于提纯等; 但是, 对小分子给体材料的结晶性难于精确调控, 使获得合适的纳米级结构的混合膜仍然是一个挑战. 本综述以给体小分子中心共轭单元的扩展为主线, 从分子设计的角度汇总了近年来对苯并二噻吩、萘并二噻吩和二噻并苯并二噻吩类小分子给体材料的结晶性研究, 并为进一步改善电池活性层形貌和获得更高的光伏性能提供了未来发展的建议.  相似文献   

4.
5.
设计合成了2个同分异构体小分子给体C2-C-F和C2-M-F,二者仅中间桥联三噻吩单元上烷基链的取代位置不同.研究结果表明,烷基链取代位置对其吸光性能和能级影响较小,但对与受体BTP-4F-12共混后的活性层形貌具有较大影响.其中,小分子给体C2-C-F与受体BTP-4F-12共混的薄膜获得了较好的形貌,光伏器件效率达到12.84%.研究结果表明,可以通过烷基取代的位置来精细调控活性层的形貌,为高效小分子给体的设计提供了有益的参考.  相似文献   

6.
给体-受体-给体(Donor-Acceptor-Donor, D-A-D)型稠环及其衍生物因具有共轭平面结构大、载流子迁移率高、吸光性能优异和光热稳定性等优点,被应用于太阳能电池中,并获得了优异的光伏性能.概述了基于D-A-D型稠环的小分子光伏材料的最新研究进展,总结了该类材料分子结构与其光伏性能之间的关系.  相似文献   

7.
三元策略是提升器件光电转换效率的重要途径.本文设计合成了基于苯并噻二唑并二噻吩桥联基团的宽带隙小分子给体DRDTBT,并将其作为有机太阳能电池中的第三组分.通过引入具有缺电子性质的苯并噻二唑并二噻吩单元,使DRDTBT获得了较低的最高占有轨道能级以及高的结晶性,将其作为第三组分引入基于PM6∶BTP-eC9的器件中时有效提升了器件的开路电压,活性层形貌也得到了更好的调节.得益于提升的开路电压和填充因子,三元器件取得了优于二元器件的光电转换效率,其开路电压为0.86 V,短路电流密度为26.99 mA/cm2,填充因子为76.34%,最终取得了17.72%的高光电转换效率,证明将高结晶性缺电子单元引入小分子给体第三组分中是提升三元有机太阳能电池效率的有效途径.  相似文献   

8.
有机太阳能电池具有低成本、柔性和质量轻等优势,是一种有应用前景的光伏技术,受到人们的广泛关注.有机太阳能电池的光敏活性层通常由p-型有机半导体(包括小分子和高分子)与n-型有机半导体(包括小分子和高分子)共混而成.小分子给体/高分子受体型有机太阳能电池具有形貌热稳定性优异的特点,值得深入研究.本综述旨在总结小分子给体/高分子受体型有机太阳能电池的研究进展,分别介绍了基于酰亚胺基、氰基和含硼氮配位键(B←N)的高分子受体的活性层材料体系的发展状况.在器件性能方面,通过分子设计、相分离形貌调控,改善了小分子给体/高分子受体的匹配性,将该类电池的能量转换效率从最初的0.29%提升至目前的9.51%,为性能的进一步提升总结了经验;在稳定性方面,基于该体系形貌热稳定性优异的特点,开发出高温耐受型有机太阳能电池器件.最后,展望了小分子给体/高分子受体型有机太阳能电池的未来发展方向和前景.  相似文献   

9.
设计合成了3种可溶液加工的基于噻吩给体和2-吡喃-4-亚基丙二氰(PM)受体的新型Donor-Acceptor-Donor(D-A-D)型有机小分子TPT-N, TPT-S和TPT-D. 研究了噻吩给体单元上烷基链的数目对分子的溶解性、 光物理(吸收特性)、 热稳定和光电性能的影响. 结果表明, 随着烷基链的增加, 分子的溶解性增加, 成膜性能提高; 分子在溶液中的吸收光谱发生红移, 薄膜的吸收谱带变窄, 分子的最高占有分子轨道(HOMO)能级提高. 以D-A-D型有机小分子为给体, 富勒烯C60衍生物-苯基-C61-丁酸甲酯(PCBM)为受体制备了结构为ITO/PEDOT∶PSS/D-A-D∶PCBM/LiF/Al的体异质结太阳能电池. 研究结果表明, 基于单烷基链的TPT-S的太阳能电池具有相对较高的能量转换效率. 说明在D-A-D型有机小分子太阳能电池材料中, 烷基链的数目是决定材料性能及器件性能的重要因素之一.  相似文献   

10.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T,BT-8T,FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC61BM和FFBT-8T/PC61BM的光伏器件,将获得的PCE分别高达约4.7%和5.2%.在以上研究的基础上,推测FBT-8T和FFBT-8T是潜在的高性能的有机小分子体异质结光伏给体材料.  相似文献   

11.
本文设计合成了一系列以咔唑(CZ)和吡咯并吡咯二酮(DPP)为基本结构单元的D-A结构的新型小分子材料,并对其进行了一系列的性能表征.合成的材料以咔唑作为给电子单元,吡咯并吡咯二酮作为吸电子单元,采用三键作为π桥,并引入4-氟苯基、4-氰基苯基和4-甲氧基苯基作为末端取代基团对材料进行修饰.其中材料CZBTDPPF和CZBTDPPO因分别具有1.85和1.79 eV的较窄带隙而分别获得了相对较高的的光电转化效率(1.97%和1.91%).由此可见,引入4-氟苯基和4-甲氧基苯基作为末端取代基团对于延长材料共轭结构、拓宽材料吸收从而实现材料光伏性能的提升具有重要的作用.  相似文献   

12.
以三苯胺(TPA)-吡咯并吡咯二酮(DPP)为骨架,分别以咔唑(CZ)和芴(FLU)为端基合成了2种新型D-A-D′型小分子给体材料TPADPPCZ和TPADPPFLU,通过紫外-可见吸收光谱和循环伏安法研究了它们的光学和电化学性质.TPADPPCZ和TPADPPFLU均获得了较窄的带隙(1.66和1.81eV),与TPADPPCZ相比,TPADPPFLU的HOMO能级更低(分别为-5.13和-5.26eV).此外,以富勒烯PC71BM为受体,TPADPPCZ和TPADPPFLU为给体制备了本体异质结有机光伏器件.基于TPADPPFLU材料制备的器件获得了更高的开路电压0.88 V,同时得到了3.54%的光电转换效率.结果表明在D-A-D′不对称结构中引入弱给电子端基(D′)可以有效降低材料的HOMO能级,提升开路电压,最终实现调控光伏性能的目的.  相似文献   

13.
本文以低比例的磷光材料作为给体,制备了基于MoOx/C60:x%Ir(ppy)3的有机太阳能电池(OPV)器件.其中,C60为高比例的受体材料,金属配合物Ir(ppy)3为低比例的给体材料,MoOx为阳极缓冲层.通过一系列不同Ir(ppy)3比例的OPV器件对比研究,得出了最优器件结构.研究发现,当Ir(ppy)3比例足够小时,器件表现为肖特基势垒,开路电压(VOC)较大,短路电流(JSC)较小;随着Ir(ppy)3比例的增加,VOC逐渐减少,而JSC逐渐增大;当进一步增加Ir(ppy)3比例时,VOC趋于稳定,JSC开始减小.结果显示,5%Ir(ppy)3比例的器件性能最佳,效率达1.7%.为了使器件效率得到进一步提升,本研究组采用吸收光谱范围比C60更宽的C70作为受体材料,使光电转换效率进一步提升至3.0%.  相似文献   

14.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T, BT-8T, FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC61BM和FFBT-8T/PC61BM的光伏器件,将获得的...  相似文献   

15.
《有机化学》2008,28(9)
不对称Nitro—Mannich(或Aza-Henry)反应在有机合成中应用非常广泛,其产物可以方便地转化为重要的手性中间体如1,2-双胺或α-氨基羰基类化合物.最近,Shibasaki小组报道了〉20:1的syn-选择性和83%-98%ee的双金属Cu-Sm席夫碱络合物催化的不对称Nitro—Mannich反应.但是,如何实现高效anti-选择性的不对称Nitro—Mannich反应仍然是一个没有解决的极具挑战性课题.  相似文献   

16.
聚合物太阳能电池由于具有结构简单、成本低、重量轻和可制成柔性器件等突出优点,近几年受到了越来越多的关注。但是,与传统的无机硅系太阳能电池相比,较低的能量转换效率一直是制约其发展的瓶颈。近年来大量的研究显示,噻咯结构单元被引入给-受体(D-A)型共轭聚合物光伏材料中,能有效地改善相应聚合物的结晶性能,并调节其能级结构(HOMO/LUMO),从而显著改善聚合物的光伏性能。本文综述了含有噻咯环的低能隙共轭聚合物给体光伏材料的研究进展,重点介绍了含有二噻吩并噻咯单元的窄带隙D-A共轭聚合物的最新研究,并进一步提出了给体材料的研究方向以及有待解决的问题。  相似文献   

17.
叶怀英  李文  李维实 《有机化学》2012,32(2):266-283
有机太阳能电池由于质轻、价廉、柔性,受到人们的广泛关注.开发性能优异的聚合物给体材料,是近期有机太阳能电池研究的主流方向之一.迄今为止,已经成功开发出各种各样具有优秀的给体性质的共轭聚合物.基于这些材料制备的有机太阳能电池器件,已经突破9%的光电转换效率.按照聚合物给体材料的主链结构分类,综述了近年来这方面的研究进展.对一些受到普遍关注的材料,从设计思想、性能剖析到器件制备和性能,做了详细的介绍,以期能够深层次理解材料的化学结构-凝聚态结构-性能间的基本规律,为今后的材料研发提供有价值的参考.  相似文献   

18.
有机太阳能电池光电转化效率已经突破13%,这主要归因于活性层材料的不断丰富与改进。其中,以聚合物为母体的裁剪型分子,其相比于聚合物具有明确的分子量,共轭长度可调,高消光系数,优良的结晶性等优势。本文简要介绍裁剪型分子在二元本体异质结体系,三元体系,非富勒烯体系中的应用及我们组的相关研究工作,总结了其特点并对其应用前景做了展望。  相似文献   

19.
崔超华 《高分子学报》2021,52(6):663-678
有机太阳能电池具有重量轻、柔性、半透明等突出优点,是新一代光伏技术的重要发展方向.有机光伏材料是有机太阳能电池的核心,决定着器件的能量转换效率.因此,发展合理的分子设计策略制备高效有机光伏材料是提升有机太阳能电池效率的关键.本文总结了有机光伏材料的研究进展,着重阐述烷硫基侧链策略在调控给/受体材料能级、提升光伏性能方面的应用,论述从光伏材料的分子设计层面有效调控材料的聚集态行为、优化活性层形貌的策略,以及探讨现阶段有机光伏领域存在的科学问题及发展方向.  相似文献   

20.
设计了3个由不同数量的F原子取代的苯并[1,2-b;4,5-b′]二塞吩(BDT)衍生物及其二聚体,采用密度泛函理论研究其电子结构和轨道能级,着重探讨了F原子取代对开路电压的影响.采用含时密度泛函理论模拟了光谱性质,明确了F原子取代对短路电流的影响;同时采用跃迁密度矩阵探讨了它们的激子耦合能力,进而推测F原子取代对光电转换效率的影响,为设计合成新型高效有机太阳能电池给体材料提供了重要的理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号